首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2004年   1篇
  2000年   1篇
  1970年   1篇
排序方式: 共有3条查询结果,搜索用时 171 毫秒
1
1.
2.
Novikov VN  Sokolov AP 《Nature》2004,431(7011):961-963
The nature of the transformation by which a supercooled liquid 'freezes' to a glass--the glass transition--is a central issue in condensed matter physics but also affects many other fields, including biology. Substantial progress has been made in understanding this phenomenon over the past two decades, yet many key questions remain. In particular, the factors that control the temperature-dependent relaxation and viscous properties of the liquid phase as the glass transition is approached (that is, whether the glass-forming liquid is 'fragile' or 'strong') remain unclear. Here we show that the fragility of a glass-forming liquid is intimately linked to a very basic property of the corresponding glass phase: the relative strength of shear and bulk moduli, or Poisson's ratio.  相似文献   
3.
New high-pressure phases of lithium   总被引:3,自引:0,他引:3  
Hanfland M  Syassen K  Christensen NE  Novikov DL 《Nature》2000,408(6809):174-178
Lithium is considered a 'simple' metal because, under ordinary conditions of pressure and temperature, the motion of conduction electrons is only weakly perturbed by interactions with the cubic lattice of atomic cores. It was recently predicted that at pressures below 100 GPa, dense Li may undergo several structural transitions, possibly leading to a 'paired-atom' phase with low symmetry and near-insulating properties. Here we report synchrotron X-ray diffraction measurements that confirm that Li undergoes pronounced structural changes under pressure. Near 39 GPa, the element transforms from a high-pressure face-centred-cubic phase, through an intermediate rhombohedral modification, to a cubic polymorph with 16 atoms per unit cell. This cubic phase has not been observed previously in any element; unusually, its calculated electronic density of states exhibits a pronounced semimetal-like minimum near the Fermi energy. We present total-energy calculations that provide theoretical support for the observed phase transition sequence. Our calculations indicate a large stability range of the 16-atom cubic phase relative to various other crystal structures tested here.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号