首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
现状及发展   2篇
综合类   16篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1984年   2篇
  1978年   3篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The habitat and nature of early life   总被引:21,自引:0,他引:21  
Nisbet EG  Sleep NH 《Nature》2001,409(6823):1083-1091
Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500-700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 degrees C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80-110 degrees C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.  相似文献   
2.
3.
4.
Summary Bone marrow stroma from radiochimeric mice was established in culture. The polymorphic enzyme glucose phosphate isomerase (GPI) was used to determine the proportions of donor and recipient present in the original bone marrow and in cultured stroma. Bone marrow initially containing 95% donor GPI, when cultured and subsequently passaged for up to 8 weeks remained about 70% donor GPI. We conclude that many cultured stromal cells are donor derived in our radiochimeras and these are probably of hematopoietic origin.  相似文献   
5.
The realms of Archaean life   总被引:6,自引:0,他引:6  
Nisbet E 《Nature》2000,405(6787):625-626
  相似文献   
6.
7.
McCauley E  Nelson WA  Nisbet RM 《Nature》2008,455(7217):1240-1243
A long-standing issue in ecology is reconciling the apparent stability of many populations with robust predictions of large-amplitude population cycles from general theory on consumer-resource interactions. Even when consumers are decoupled from dynamic resources, large-amplitude cycles can theoretically emerge from delayed feedback processes found in many consumers. Here we show that resource-dependent mortality and a dynamic developmental delay in consumers produces a new type of small-amplitude cycle that coexists with large-amplitude fluctuations in coupled consumer-resource systems. A distinctive characteristic of the small-amplitude cycles is slow juvenile development for consumers, leading to a developmental delay that is longer than the cycle period. By contrast, the period exceeds the delay in large-amplitude cycles. These theoretical predictions may explain previous empirical results on coexisting attractors found in Daphnia-algal systems. To test this, we used bioassay experiments that measure the growth rates of individuals in populations exhibiting each type of cycle. The results were consistent with predictions. Together, the new theory and experiments establish that two very general features of consumers--a resource-dependent juvenile stage duration and resource-dependent mortality--combine to produce small-amplitude resource-consumer cycles. This phenomenon may contribute to the prevalence of small-amplitude fluctuations in many other consumer-resource populations.  相似文献   
8.
Habitat structure and population persistence in an experimental community   总被引:11,自引:0,他引:11  
Understanding spatial population dynamics is fundamental for many questions in ecology and conservation. Many theoretical mechanisms have been proposed whereby spatial structure can promote population persistence, in particular for exploiter-victim systems (host-parasite/pathogen, predator-prey) whose interactions are inherently oscillatory and therefore prone to extinction of local populations. Experiments have confirmed that spatial structure can extend persistence, but it has rarely been possible to identify the specific mechanisms involved. Here we use a model-based approach to identify the effects of spatial population processes in experimental systems of bean plants (Phaseolus lunatus), herbivorous mites (Tetranychus urticae) and predatory mites (Phytoseiulus persimilis). On isolated plants, and in a spatially undivided experimental system of 90 plants, prey and predator populations collapsed; however, introducing habitat structure allowed long-term persistence. Using mechanistic models, we determine that spatial population structure did not contribute to persistence, and spatially explicit models are not needed. Rather, habitat structure reduced the success of predators at locating prey outbreaks, allowing between-plant asynchrony of local population cycles due to random colonization events.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号