首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
系统科学   1篇
现状及发展   2篇
综合类   21篇
  2020年   1篇
  2016年   2篇
  2005年   2篇
  2001年   1篇
  2000年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有24条查询结果,搜索用时 62 毫秒
1.
Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses   总被引:44,自引:0,他引:44  
Wilson RI  Nicoll RA 《Nature》2001,410(6828):588-592
Marijuana affects brain function primarily by activating the G-protein-coupled cannabinoid receptor-1 (CB1), which is expressed throughout the brain at high levels. Two endogenous lipids, anandamide and 2-arachidonylglycerol (2-AG), have been identified as CB1 ligands. Depolarized hippocampal neurons rapidly release both anandamide and 2-AG in a Ca2+-dependent manner. In the hippocampus, CB1 is expressed mainly by GABA (gamma-aminobutyric acid)-mediated inhibitory interneurons, where CB1 clusters on the axon terminal. A synthetic CB1 agonist depresses GABA release from hippocampal slices. These findings indicate that the function of endogenous cannabinoids released by depolarized hippocampal neurons might be to downregulate GABA release. Here we show that the transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons is mediated by retrograde signalling through release of endogenous cannabinoids. Signalling by the endocannabinoid system thus represents a mechanism by which neurons can communicate backwards across synapses to modulate their inputs.  相似文献   
2.
3.
Basal metabolic rate and energetics of reproduction in therian mammals   总被引:1,自引:0,他引:1  
S D Thompson  M E Nicoll 《Nature》1986,321(6071):690-693
Traditionally, the fact that reproduction in eutherian (= placental) mammals tends towards prolonged intrauterine development and short lactation has been interpreted as an evolutionary advance over the metatherian (= marsupial) short gestation and prolonged lactation. However, it has recently been postulated that marsupial reproduction involves low initial energy investment and may be advantageous by minimizing energy loss if conditions necessitate early termination. Moreover, because marsupials have basal metabolic rates (BMRs) 30% lower than those of most eutherians, it has been suggested that daily and total energy expenditures during reproduction may also be lower. We have now tested the predictions that low BMR is maintained during reproduction and that initial investment is lower in marsupials. Using indirect calorimetry, we have made the first longitudinal measurements of energy expenditure during reproduction for a marsupial and for two eutherian species with low BMRs. We find that initial investment is lowest in a eutherian and total energetic expenditures were greatest for the marsupial. We also find that, relative to BMR, all three species have increased mean maternal resting metabolic rates (RMRs) during both gestation and lactation; this is the first evidence that mammals with low BMRs can substantially elevate metabolism for prolonged periods during gestation and lactation.  相似文献   
4.
T Manabe  P Renner  R A Nicoll 《Nature》1992,355(6355):50-55
Miniature excitatory synaptic currents were recorded from CA1 pyramidal cells in hippocampal slices to study the site of the persistent change in synaptic efficacy during long-term potentiation. Induction of long-term potentiation produced a large increase in the amplitude of these currents. Such a change in amplitude suggests an increase in postsynaptic transmitter sensitivity.  相似文献   
5.
GABA-mediated biphasic inhibitory responses in hippocampus   总被引:12,自引:0,他引:12  
B E Alger  R A Nicoll 《Nature》1979,281(5729):315-317
  相似文献   
6.
Extracellular electron transfer via microbial nanowires   总被引:8,自引:0,他引:8  
Reguera G  McCarthy KD  Mehta T  Nicoll JS  Tuominen MT  Lovley DR 《Nature》2005,435(7045):1098-1101
Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.  相似文献   
7.

In this article we discuss how an interdisciplinary research team partnered with a variety of stakeholders concerned with and/or affected by the impacts of climate change in the Red River Delta of Vietnam. The research, undertaken from 2016 to 2018, drew upon a wide range of methods to investigate systemically these impacts – with a view to the research inputting into the development of (more) sustainable ways of living. The research solicited various accounts of the experience of climate change in the community, set up learning processes in community meetings, and created an interface with government officials positioned at commune, district, provincial, and national levels. The intention was to offer support towards developing a learning process (broadly defined as including learnings/systemic inquiry across organizational levels of the society) to pursue options for sustainable living. The article offers our post-facto reflections which render more explicit (to ourselves and for the benefit of audiences) how the research team, with Hoang as lead researcher, facilitated the inquiry process towards developing a synthesis which underscored the assets for resilience to climate change and supported interventions to strengthen such (defined) assets.

  相似文献   
8.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   
9.
The phenomenon of long-term potentiation (LTP), a long lasting increase in the strength of synaptic transmission which is due to brief, repetitive activation of excitatory afferent fibres, is one of the most striking examples of synaptic plasticity in the mammalian brain. In the CA1 region of the hippocampus, the induction of LTP requires activation of NMDA (N-methyl-D-aspartate) receptors by synaptically released glutamate with concomitant postsynaptic membrane depolarization. This relieves the voltage-dependent magnesium block of the NMDA-receptor ion channel, allowing calcium to flow into the dendritic spine. Although calcium has been shown to be a necessary trigger for LTP (refs 11, 12), little is known about the immediate biochemical processes that are activated by calcium and are responsible for LTP. The most attractive candidates have been calcium/calmodulin-dependent protein kinase II (CaM-KII) (refs 13-16), protein kinase C (refs 17-19), and the calcium-dependent protease, calpain. Extracellular application of protein kinase inhibitors to the hippocampal slice preparation blocks the induction of LTP (refs 21-23) but it is unclear whether this is due to a pre- and/or postsynaptic action. We have found that intracellular injection into CA1 pyramidal cells of the protein kinase inhibitor H-7, or of the calmodulin antagonist calmidazolium, blocks LTP. Furthermore, LTP is blocked by the injection of synthetic peptides that are potent calmodulin antagonists and inhibit CaM-KII auto- and substrate phosphorylation. These findings demonstrate that in the postsynaptic cell both activation of calmodulin and kinase activity are required for the generation of LTP, and focus further attention on the potential role of CaM-KII in LTP.  相似文献   
10.
Summary Extracts of polymorphonuclear leucocytes (PMNL) from diabetic human exhibited less collagenolytic activity than extracts from normoglycemic control subjects. Partially purified control extracts produced A and B collagen breakdown products of the type generated by mammalian collagenase; the diabetic preparation produced decreased amounts of the same products. The diabetic PMNLs may synthesize abnormally low levels of collagenase or contain inactive forms of this enzyme.Supported by a grant (No. DE-03987) from the National Institute of Dental Research (N.I.H.), USA. This study forms part of the Ph.D. thesis of G.A. Nicoll.Acknowledgments. The authors wish to thank Ms Salema Karim and Mr F.R. Singh for excellent technical assistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号