首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2001年   1篇
  2000年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Coulomb-blockade transport--whereby the Coulomb interaction between electrons can prohibit their transport around a circuit--occurs in systems in which both the tunnel resistance, Rb between neighbouring sites is large (>h/e2) and the charging energy, E(C) (E(C) = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites--metallic, superconducting, semiconducting or quantum dot--is to first order irrelevant for this phenomenon to be observed. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.  相似文献   
2.
An SNP map of human chromosome 22   总被引:35,自引:0,他引:35  
The human genome sequence will provide a reference for measuring DNA sequence variation in human populations. Sequence variants are responsible for the genetic component of individuality, including complex characteristics such as disease susceptibility and drug response. Most sequence variants are single nucleotide polymorphisms (SNPs), where two alternate bases occur at one position. Comparison of any two genomes reveals around 1 SNP per kilobase. A sufficiently dense map of SNPs would allow the detection of sequence variants responsible for particular characteristics on the basis that they are associated with a specific SNP allele. Here we have evaluated large-scale sequencing approaches to obtaining SNPs, and have constructed a map of 2,730 SNPs on human chromosome 22. Most of the SNPs are within 25 kilobases of a transcribed exon, and are valuable for association studies. We have scaled up the process, detecting over 65,000 SNPs in the genome as part of The SNP Consortium programme, which is on target to build a map of 1 SNP every 5 kilobases that is integrated with the human genome sequence and that is freely available in the public domain.  相似文献   
3.
We describe a map of 1.42 million single nucleotide polymorphisms (SNPs) distributed throughout the human genome, providing an average density on available sequence of one SNP every 1.9 kilobases. These SNPs were primarily discovered by two projects: The SNP Consortium and the analysis of clone overlaps by the International Human Genome Sequencing Consortium. The map integrates all publicly available SNPs with described genes and other genomic features. We estimate that 60,000 SNPs fall within exon (coding and untranslated regions), and 85% of exons are within 5 kb of the nearest SNP. Nucleotide diversity varies greatly across the genome, in a manner broadly consistent with a standard population genetic model of human history. This high-density SNP map provides a public resource for defining haplotype variation across the genome, and should help to identify biomedically important genes for diagnosis and therapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号