首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
研究方法   1篇
综合类   5篇
  2004年   2篇
  1999年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
2.
3.
Meyerowitz EM 《Nature》1999,402(6763):731-732
  相似文献   
4.
5.
A M van der Bliek  E M Meyerowitz 《Nature》1991,351(6325):411-414
Temperature-sensitive paralysis is the most striking defect of adult Drosophila carrying the shibire mutation. This is believed to be due to a reversible block of endocytosis, which prevents membrane cycling and thus depletes synaptic vesicles. The shibire mutation also affects many tissues outside the nervous system. We have now mapped and characterized the shibire gene. A 275-kilobase yeast artificial chromosome was subcloned into cosmids, among which the gene was then located by analysing with restriction-fragment length polymorphisms. A 15-kilobase fragment of wild-type DNA rescues the mutant phenotype and the sequence of two mutant alleles show differences with wild type, demonstrating that we have isolated the shibire gene. The gene encodes a protein that is highly similar to rat dynamin, 69% of the amino-acid sequence is identical. Dynamin is a GTP-driven mechanochemical enzyme related to mammalian mx-proteins and to the yeast vps 1 gene product. Because the shibire gene product and dynamin have extensive similarity, we propose that they are cognate homologues. Dynamin causes microtubules to slide along each other in vitro and in extracts it is associated with a distinct, but so far uncharacterized, membrane fraction. In light of the shibire phenotype, we suggest that these proteins provide the motor for vesicular transport during endocytosis.  相似文献   
6.
The war of the whorls: genetic interactions controlling flower development.   总被引:138,自引:0,他引:138  
E S Coen  E M Meyerowitz 《Nature》1991,353(6339):31-37
The analysis of mutations affecting flower structure has led to the identification of some of the genes that direct flower development. Cloning of these genes has allowed the formulation of molecular models of how floral meristem and organ identity may be specified, and has shown that the distantly related flowering plants Arabidopsis thaliana and Antirrhinum majus use homologous mechanisms in floral pattern formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号