首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
研究方法   1篇
综合类   3篇
  2008年   1篇
  2004年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
2.
To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 x 10(-9)) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 x 10(-8), rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.  相似文献   
3.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   
4.
I Suzuki  H Kiyono  K Kitamura  D R Green  J R McGhee 《Nature》1986,320(6061):451-454
Continuous ingestion of a thymus-dependent (TD) antigen differentially affects two compartments of the immune system. A secretory IgA antibody response is induced in mucosal tissues, concurrent with a state of antigen-specific systemic unresponsiveness to parenteral challenge, termed oral tolerance. The precise mechanisms whereby gut antigenic exposure induces oral tolerance are unknown, although T-suppressor cells, anti-idiotypic networks and immune complex formation have all been proposed. Here we show that the systemic unresponsiveness of mice made orally tolerant to the TD antigen sheep red blood cells (SRBC) is reversed by the adoptive transfer of Lyt-1+,2-, Vicia villosa lectin-adherent and I-J+ T cells derived from mice which are genetically resistant to the induction of oral tolerance to SRBC. This T-cell subpopulation has the characteristics of contrasuppressor effector T cells (Tcs). Small numbers of these Tcs cells reverse SRBC-specific tolerance both in vivo and in vitro. This finding offers new insight into the mechanisms of oral tolerance induction and maintenance, and suggests that a network of T cells are involved in the regulation of host responses to ingested antigens.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号