首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  1983年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Bites and stings from venomous creatures can produce pain and inflammation as part of their defensive strategy to ward off predators or competitors. Molecules accounting for lethal effects of venoms have been extensively characterized, but less is known about the mechanisms by which they produce pain. Venoms from spiders, snakes, cone snails or scorpions contain a pharmacopoeia of peptide toxins that block receptor or channel activation as a means of producing shock, paralysis or death. We examined whether these venoms also contain toxins that activate (rather than inhibit) excitatory channels on somatosensory neurons to produce a noxious sensation in mammals. Here we show that venom from a tarantula that is native to the West Indies contains three inhibitor cysteine knot (ICK) peptides that target the capsaicin receptor (TRPV1), an excitatory channel expressed by sensory neurons of the pain pathway. In contrast with the predominant role of ICK toxins as channel inhibitors, these previously unknown 'vanillotoxins' function as TRPV1 agonists, providing new tools for understanding mechanisms of TRP channel gating. Some vanillotoxins also inhibit voltage-gated potassium channels, supporting potential similarities between TRP and voltage-gated channel structures. TRP channels can now be included among the targets of peptide toxins, showing that animals, like plants (for example, chilli peppers), avert predators by activating TRP channels on sensory nerve fibres to elicit pain and inflammation.  相似文献   
2.
3.
Lumpkin EA  Caterina MJ 《Nature》2007,445(7130):858-865
Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号