首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Magnetic reconnection in a current sheet converts magnetic energy into particle energy, a process that is important in many laboratory, space and astrophysical contexts. It is not known at present whether reconnection is fundamentally a process that can occur over an extended region in space or whether it is patchy and unpredictable in nature. Frequent reports of small-scale flux ropes and flow channels associated with reconnection in the Earth's magnetosphere raise the possibility that reconnection is intrinsically patchy, with each reconnection X-line (the line along which oppositely directed magnetic field lines reconnect) extending at most a few Earth radii (R(E)), even though the associated current sheets span many tens or hundreds of R(E). Here we report three-spacecraft observations of accelerated flow associated with reconnection in a current sheet embedded in the solar wind flow, where the reconnection X-line extended at least 390R(E) (or 2.5 x 10(6) km). Observations of this and 27 similar events imply that reconnection is fundamentally a large-scale process. Patchy reconnection observed in the Earth's magnetosphere is therefore likely to be a geophysical effect associated with fluctuating boundary conditions, rather than a fundamental property of reconnection. Our observations also reveal, surprisingly, that reconnection can operate in a quasi-steady-state manner even when undriven by the external flow.  相似文献   
2.
In situ detection of collisionless reconnection in the Earth's magnetotail   总被引:14,自引:0,他引:14  
Oieroset M  Phan TD  Fujimoto M  Lin RP  Lepping RP 《Nature》2001,412(6845):414-417
Magnetic reconnection is the process by which magnetic field lines of opposite polarity reconfigure to a lower-energy state, with the release of magnetic energy to the surroundings. Reconnection at the Earth's dayside magnetopause and in the magnetotail allows the solar wind into the magnetosphere. It begins in a small 'diffusion region', where a kink in the newly reconnected lines produces jets of plasma away from the region. Although plasma jets from reconnection have previously been reported, the physical processes that underlie jet formation have remained poorly understood because of the scarcity of in situ observations of the minuscule diffusion region. Theoretically, both resistive and collisionless processes can initiate reconnection, but which process dominates in the magnetosphere is still debated. Here we report the serendipitous encounter of the Wind spacecraft with an active reconnection diffusion region, in which are detected key processes predicted by models of collisionless reconnection. The data therefore demonstrate that collisionless reconnection occurs in the magnetotail.  相似文献   
3.
A transition between the supersonic solar wind and the subsonic heliosheath was observed by Voyager 1, but the expected termination shock was not seen owing to a gap in the telemetry. Here we report observations of the magnetic field structure and dynamics of the termination shock, made by Voyager 2 on 31 August-1 September 2007 at a distance of 83.7 au from the Sun (1 au is the Earth-Sun distance). A single crossing of the shock was expected, with a boundary that was stable on a timescale of several days. But the data reveal a complex, rippled, quasi-perpendicular supercritical magnetohydrodynamic shock of moderate strength undergoing reformation on a scale of a few hours. The observed structure suggests the importance of ionized interstellar atoms ('pickup protons') at the shock.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号