首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   5篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 515 毫秒
1
1.
Armatas GS  Kanatzidis MG 《Nature》2006,441(7097):1122-1125
Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic mesostructured germanium, MSU-Ge-1, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48 (ref. 2). Although Ge is a high-melting, covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge(4-) atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt mesostructured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying Ia3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap.  相似文献   
2.
Chung I  Lee B  He J  Chang RP  Kanatzidis MG 《Nature》2012,485(7399):486-489
Dye-sensitized solar cells based on titanium dioxide (TiO(2)) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn(1-x)Ga(x)Se(2) (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI(3) can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI(2.95)F(0.05) doped with SnF(2), nanoporous TiO(2) and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI(3) enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region.  相似文献   
3.
Trikalitis PN  Rangan KK  Bakas T  Kanatzidis MG 《Nature》2001,410(6829):671-675
Open framework metal chalcogenide solids, with pore sizes in the nano- and mesoscale, are of potentially broad technological and fundamental interest in research areas ranging from optoelectronics to the physics of quantum confinement. Although there have been significant advances in the design and synthesis of mesostructured silicas, the construction of their non-oxidic analogues still remains a challenge. Here we describe a synthetic strategy that allows the preparation of a large class of mesoporous materials based on supramolecular assembly of tetrahedral Zintl anions [SnSe4]4- with transition metals in the presence of cetylpyridinium (CP) surfactant molecules. These mesostructured semiconducting selenide materials are of the general formulae (CP)4-2xMxSnSe4 (where 1.0 < x < 1.3; M=Mn, Fe, Co, Zn, Cd, Hg). The resulting materials are open framework chalcogenides and form mesophases with uniform pore size (with spacings between 35 and 40 A). The pore arrangement depends on the synthetic conditions and metal used, and include disordered wormhole, hexagonal and even cubic phases. All compounds are medium bandgap semiconductors (varying between 1.4 and 2.5 eV). We expect that such semiconducting porous networks could be used for optoelectronic, photosynthetic and photocatalytic applications.  相似文献   
4.
5.
Salvador JR  Guo F  Hogan T  Kanatzidis MG 《Nature》2003,425(6959):702-705
Most materials expand upon heating. Although rare, some materials expand on cooling, and are said to exhibit negative thermal expansion (NTE); but the property is exhibited in only one crystallographic direction. Such materials include silicon and germanium at very low temperature (<100 K) and, at room temperature, glasses in the titania-silica family, Kevlar, carbon fibres, anisotropic Invar Fe-Ni alloys, ZrW2O3 (ref. 4) and certain molecular networks. NTE materials can be combined with materials demonstrating a positive thermal expansion coefficient to fabricate composites exhibiting an overall zero thermal expansion (ZTE). ZTE materials are useful because they do not undergo thermal shock on rapid heating or cooling. The need for such composites could be avoided if ZTE materials were available in a pure form. Here we show that an electrically conductive intermetallic compound, YbGaGe, can exhibit nearly ZTE--that is, negligible volume change between 100 and 400 K. We suggest that this response is due to a temperature-induced valence transition in the Yb atoms. ZTE materials are desirable to prevent or reduce resulting strain or internal stresses in systems subject to large temperature fluctuations, such as in space applications and thermomechanical actuators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号