首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The ability to cool and slow atoms with light for subsequent trapping allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas and optical trapping of caesium dimers generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 10(6) cm(-3) in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems.  相似文献   
2.
Crompvoets FM  Bethlem HL  Jongma RT  Meijer G 《Nature》2001,411(6834):174-176
The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by light owing to a far more complex energy-level spectrum. However, time-varying electric and magnetic fields have been successfully used to control the position and velocity of ions, suggesting that these schemes can also be used to manipulate neutral particles having an electric or magnetic dipole moment. Although the forces exerted on neutral species are many orders of magnitude smaller than those exerted on ions, beams of neutral dipolar molecules have been successfully slowed down in a series of pulsed electric fields and subsequently loaded into an electrostatic trap. Here we extend the scheme to include a prototype electrostatic storage ring made of a hexapole torus with a circumference of 80 cm. After injection, decelerated bunches of deuterated ammonia molecules, each containing about 106 molecules in a single quantum state and with a translational temperature of 10 mK, travel up to six times around the ring. Stochastic cooling might provide a means to increase the phase-space density of the stored molecules in the storage ring, and we expect this to open up new opportunities for molecular spectroscopy and studies of cold molecular collisions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号