首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
研究方法   2篇
综合类   3篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
M J Kuehn  J Heuser  S Normark  S J Hultgren 《Nature》1992,356(6366):252-255
Escherichia coli is a frequent cause of several common bacterial infections in humans and animals, including urinary tract infections, bacteraemia and bacteria-related diarrhoea and is also the main cause of neonatal meningitis. Microbial attachment to surfaces is a key event in colonization and infection and results mainly from a stereochemical fit between microbial adhesins and complementary receptors on host cells. Bacterial adhesins required for extracellular colonization by Gram-negative bacteria are often minor components of heteropolymeric fibres called pili which must be oriented in an accessible manner in these structures to be able to bind to specific receptor architectures. P pili mediate the binding of uropathogenic E. coli to a digalactoside receptor determinant present in the urinary tract epithelium. We report here that the adhesin is a component of distinct fibrillar structures present at the tips of the pili. These virulence-associated tip fibrillae are thin, flexible polymers composed mostly of repeating subunits of PapE that frequently terminate with the alpha-D-galactopyranosyl-(1-4)-beta-D-galactopyranose or Gal alpha (1-4)Gal binding PapG adhesin.  相似文献   
2.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with fibrofatty replacement of cardiac myocytes, ventricular tachyarrhythmias and sudden cardiac death. In 32 of 120 unrelated individuals with ARVC, we identified heterozygous mutations in PKP2, which encodes plakophilin-2, an essential armadillo-repeat protein of the cardiac desmosome. In two kindreds with ARVC, disease was incompletely penetrant in most carriers of PKP2 mutations.  相似文献   
3.
Quinlan ME  Heuser JE  Kerkhoff E  Mullins RD 《Nature》2005,433(7024):382-388
The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors--the Arp2/3 complex and the formin family of proteins--that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.  相似文献   
4.
Identification of globular mechanochemical heads of kinesin   总被引:37,自引:0,他引:37  
J M Scholey  J Heuser  J T Yang  L S Goldstein 《Nature》1989,338(6213):355-357
Kinesin is a mechanoenzyme which uses energy liberated from ATP hydrolysis to transport particles towards the 'plus ends' of microtubules. The enzyme consists of two polypeptide heavy chains of relative molecular mass (Mr) approximately 110,000-140,000 (110K-140K) plus copurifying light chains; these polypeptides are arranged in a structure consisting of two globular heads attached to a fibrous stalk which terminates in a 'feathered' tail. Here we report that a function-disrupting monoclonal antikinesin, which binds to the 45K fragment of the kinesin heavy chain, recognizes an epitope located towards the N-terminal end of the heavy chain, and decorates the two globular heads lying at one end of the intact molecules (one antibody per head). The results show that the two heavy chains of native kinesin are arranged in parallel, and that the 45K fragments, which display nucleotide-sensitive interactions with microtubules, represent mechanochemical 'heads' located at the N-terminal regions of the heavy chains. Thus, it is likely that the kinesin heads are analogous to the subfragment-1 domains of myosin.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号