首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   1篇
综合类   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Insects breathe discontinuously to avoid oxygen toxicity   总被引:1,自引:0,他引:1  
Hetz SK  Bradley TJ 《Nature》2005,433(7025):516-519
The respiratory organs of terrestrial insects consist of tracheal tubes with external spiracular valves that control gas exchange. Despite their relatively high metabolic rate, many insects have highly discontinuous patterns of gas exchange, including long periods when the spiracles are fully closed. Two explanations have previously been put forward to explain this behaviour: first, that this pattern serves to reduce respiratory water loss, and second, that the pattern may have initially evolved in underground insects as a way of dealing with hypoxic or hypercapnic conditions. Here we propose a third possible explanation based on the idea that oxygen is necessary for oxidative metabolism but also acts as a toxic chemical that can cause oxidative damage of tissues even at relatively low concentrations. At physiologically normal partial pressures of CO2, the rate of CO2 diffusion out of the insect respiratory system is slower than the rate of O2 entry; this leads to a build-up of intratracheal CO2. The spiracles must therefore be opened at intervals to rid the insect of accumulated CO2, a process that exposes the tissues to dangerously high levels of O2. We suggest that the cyclical pattern of open and closed spiracles observed in resting insects is a necessary consequence of the need to rid the respiratory system of accumulated CO2, followed by the need to reduce oxygen toxicity.  相似文献   
2.
Protein misfolding and disease: the case of prion disorders   总被引:2,自引:0,他引:2  
Recent findings strongly support the hypothesis that diverse human disorders, including the most common neurodegenerative diseases, arise from misfolding and aggregation of an underlying protein. Despite the good evidence for the involvement of protein misfolding in disease pathogenesis, the mechanism by which protein conformational changes participate in the disease is still unclear. Among the best-studied diseases of this group are the transmissible spongiform encephalopathies or prion-related disorders, in which misfolding of the normal prion protein plays a key role in the disease. In this article we review recent data on the link between prion protein misfolding and the pathogensis of spongiform encephalopathies. Received 15 July 2002; received after revision 19 August 2002; accepted 23 August 2002 RID="*" ID="*"Corresponding author.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号