首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 244 毫秒
1
1.
McElwain JC  Wade-Murphy J  Hesselbo SP 《Nature》2005,435(7041):479-482
The marine sedimentary record exhibits evidence for episodes of enhanced organic carbon burial known as 'oceanic anoxic events' (OAEs). They are characterized by carbon-isotope excursions in marine and terrestrial reservoirs and mass extinction of marine faunas. Causal mechanisms for the enhancement of organic carbon burial during OAEs are still debated, but it is thought that such events should draw down significant quantities of atmospheric carbon dioxide. In the case of the Toarcian OAE (approximately 183 million years ago), a short-lived negative carbon-isotope excursion in oceanic and terrestrial reservoirs has been interpreted to indicate raised atmospheric carbon dioxide caused by oxidation of methane catastrophically released from either marine gas hydrates or magma-intruded organic-rich rocks. Here we test these two leading hypotheses for a negative carbon isotopic excursion marking the initiation of the Toarcian OAE using a high-resolution atmospheric carbon dioxide record obtained from fossil leaf stomatal frequency. We find that coincident with the negative carbon-isotope excursion carbon dioxide is first drawn down by 350 +/- 100 p.p.m.v. and then abruptly elevated by 1,200 +/- 400 p.p.m.v, and infer a global cooling and greenhouse warming of 2.5 +/- 0.1 degrees C and 6.5 +/- 1 degrees C, respectively. The pattern and magnitude of carbon dioxide change are difficult to reconcile with catastrophic input of isotopically light methane from hydrates as the cause of the negative isotopic signal. Our carbon dioxide record better supports a magma-intrusion hypothesis, and suggests that injection of isotopically light carbon from the release of thermogenic methane occurred owing to the intrusion of Gondwana coals by Toarcian-aged Karoo-Ferrar dolerites.  相似文献   
2.
In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that--as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago--the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.  相似文献   
3.
<正>对采自气候为非限制性因子地区的柳杉树轮稳定碳同位素比 δ13 C进行气候响应分析。用排除法消除大气二氧化碳中δ13C的变化对柳杉树轮δ13C变化的影响后,建立残差年序列RE,并结合西天目山气象站的气象记录,分析了树轮δ13C年序列对气候要素的响应。结果表明:西天目山地区树轮 δ13C的高频振荡与 11、12月最高气温的平均值,1、2、3月降水总和以及6、7月降水总和显著相关,在一定程度上反映了东亚季风对该区的影响大小。可见气候非限制性因子地区树轮稳定碳同位素组成年序列同样可以作为气候变化指针。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号