首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
研究方法   1篇
综合类   9篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有10条查询结果,搜索用时 171 毫秒
1
1.
Mapping of general anaesthetic target sites   总被引:1,自引:0,他引:1  
J R Elliott  D A Haydon 《Nature》1986,319(6048):77-78
  相似文献   
2.
3.
4.
The conventional objective of vaccination programmes is to eliminate infection by reducing the reproduction number of an infectious agent to less than one, which generally requires vaccination of the majority of individuals. In populations of endangered wildlife, the intervention required to deliver such coverage can be undesirable and impractical; however, endangered populations are increasingly threatened by outbreaks of infectious disease for which effective vaccines exist. As an alternative, wildlife epidemiologists could adopt a vaccination strategy that protects a population from the consequences of only the largest outbreaks of disease. Here we provide a successful example of this strategy in the Ethiopian wolf, the world's rarest canid, which persists in small subpopulations threatened by repeated outbreaks of rabies introduced by domestic dogs. On the basis of data from past outbreaks, we propose an approach that controls the spread of disease through habitat corridors between subpopulations and that requires only low vaccination coverage. This approach reduces the extent of rabies outbreaks and should significantly enhance the long-term persistence of the population. Our study shows that vaccination used to enhance metapopulation persistence through elimination of the largest outbreaks of disease requires lower coverage than the conventional objective of reducing the reproduction number of an infectious agent to less than one.  相似文献   
5.
R S Zucker  P G Haydon 《Nature》1988,335(6188):360-362
Neurons communicate by secreting a transmitter that excites or inhibits other neurons at synapses. The role of presynaptic membrane potential in triggering transmitter release is still controversial. In one view, presynaptic action potentials trigger the release by the entry of calcium ions into presynaptic terminals through voltage-dependent calcium channels. Calcium acts at high local concentrations at release sites near channel mouths to cause neurosecretion. An opposing view is that, in addition to elevating presynaptic calcium, presynaptic potential stimulates transmitter release by a distinct direct action. The relative importance of depolarization and calcium entry in neurosecretion cannot be determined because the two events are tightly linked. To delineate the roles of presynaptic potential and calcium entry in transmitter release, we have used nitr-5, a photolabile calcium chelator, and a voltage-clamp technique to control intracellular calcium and membrane potential independently at a synapse formed between cell bodies of cultured neurons of the fresh water snail Helisoma trivolvis. We found transmitter release occurred when presynaptic calcium levels were elevated to concentrations of a few micromolar, and that presynaptic voltage had no direct effect on neurosecretion.  相似文献   
6.
H Man-Son-Hing  M J Zoran  K Lukowiak  P G Haydon 《Nature》1989,341(6239):237-239
The mechanisms that underlie synaptic plasticity have been largely inferred from electrophysiological studies performed at sites remote from synaptic terminals. Thus the mechanisms involved in plasticity at the secretory sites have remained ill-defined. We have now used somatic synapses of cultured Helisoma neurones to directly assess presynaptic ion conductances and study the secretory apparatus. At these synapses we determined the actions of a modulatory neuropeptide, Phe-Met-Arg-Phe-NH2 (FMRFa), on the release of the neurotransmitter acetylcholine (ACh). Using voltage- and calcium-clamp techniques, we have demonstrated that FMRFa causes a presynaptic inhibition of ACh release by (1) reducing the magnitude of the voltage-dependent calcium current, and (2) regulating the secretory apparatus. The photolabile calcium cage, nitr-5 (refs 3-8), was dialysed into the presynaptic cell. In response to ultraviolet light, calcium was released from nitr-5 and ACh secretion was stimulated. Under conditions of constant internal calcium, FMRFa reduced the rate of ACh release. Thus we conclude that FMRFa reduces the influx of calcium during the action potential and decreases the sensitivity of the secretory apparatus to elevated internal calcium, thereby contributing to a presynaptic inhibition of transmitter release.  相似文献   
7.
8.
CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.  相似文献   
9.
Parasites and climate synchronize red grouse populations   总被引:2,自引:0,他引:2  
Cattadori IM  Haydon DT  Hudson PJ 《Nature》2005,433(7027):737-741
There is circumstantial evidence that correlated climatic conditions can drive animal populations into synchronous fluctuations in abundance. However, it is unclear whether climate directly affects the survival and fecundity of individuals, or indirectly, by influencing food and natural enemies. Here we propose that climate affects trophic interactions and could be an important mechanism for synchronizing spatially distributed populations. We show that in specific years the size of red grouse populations in northern England either increases or decreases in synchrony. In these years, widespread and correlated climatic conditions during May and July affect populations regionally and influence the density-dependent transmission of the gastrointestinal nematode Trichostrongylus tenuis, a parasite that reduces grouse fecundity. This in turn forces grouse populations into synchrony. We conclude that specific climatic events may lead to outbreaks of infectious diseases or pests that may cause dramatic, synchronized changes in the abundance of their hosts.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号