首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
祝贺大会召开 !这次不能如邀访问西安 ,我感到遗憾。祝第三届中国国际毛纺织会议圆满成功。着手研究羊毛及产品的性能与结构之间关系 ,正值此时。大约在 1 92 0到 1 970年这段时期 ,有一批扎实的实验研究项目 ,为研究羊毛结构和机械性能提供了大量资料信息。同时 ,开始了理论模拟研究。这些研究结果请参见由 W.S.Simpson和 G.H.Crawshaw主编、Woodhead Publishing出版社的书 :《Wool:Science and Technology》。尽管这些研究为发展羊毛技术提供了有用的基本信息 ,但是对工业界的直接影响甚小。相比之下 ,羊毛化学的知识为羊毛化学处理…  相似文献   
2.
High plant diversity is needed to maintain ecosystem services   总被引:3,自引:0,他引:3  
Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.  相似文献   
3.
The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.  相似文献   
4.
Grassland species loss resulting from reduced niche dimension   总被引:2,自引:0,他引:2  
Harpole WS  Tilman D 《Nature》2007,446(7137):791-793
Intact ecosystems contain large numbers of competing but coexisting species. Although numerous alternative theories have provided potential explanations for this high biodiversity, there have been few field experiments testing between these theories. In particular, theory predicts that higher diversity of coexisting competitors could result from greater niche dimensionality, for example larger numbers of limiting resources or factors. Alternatively, diversity could be independent of niche dimensionality because large numbers of species can coexist when limited by just one or two factors if species have appropriate trade-offs. Here we show that plant coexistence and diversity result from the 'niche dimensionality' of a habitat. Plant species numbers decreased with increasing numbers of added limiting soil resources (soil moisture, nitrogen, phosphorus and base cations), which is consistent with theoretical predictions that an increased supply of multiple limiting resources can reduce niche dimension. An observational field study gave similar results. The niche dimension hypothesis also explained diversity changes in the classic Park Grass Experiment at Rothamsted. Our results provide an alternative mechanistic explanation for the effects of nutrient eutrophication on the diversity of terrestrial, freshwater and marine ecosystems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号