首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
现状及发展   1篇
综合类   5篇
自然研究   1篇
  2011年   1篇
  2008年   2篇
  2003年   1篇
  1999年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有7条查询结果,搜索用时 140 毫秒
1
1.
Stellar occultations--the passing of a relatively nearby body in front of a background star--can be used to probe the atmosphere of the closer body with a spatial resolution of a few kilometres (ref. 1). Such observations can yield the scale height, temperature profile, and other information about the structure of the occulting atmosphere. Occultation data acquired for Pluto's atmosphere in 1988 revealed a nearly isothermal atmosphere above a radius of approximately 1,215 km. Below this level, the data could be interpreted as indicating either an extinction layer or the onset of a large thermal gradient, calling into question the fundamental structure of this atmosphere. Another question is to what extent Pluto's atmosphere might be collapsing as it recedes from the Sun (passing perihelion in 1989 in its 248-year orbital period), owing to the extreme sensitivity of the equilibrium surface pressure to the surface temperature. Here we report observations at a variety of visible and infrared wavelengths of an occultation of a star by Pluto in August 2002. These data reveal evidence for extinction in Pluto's atmosphere and show that it has indeed changed, having expanded rather than collapsed, since 1988.  相似文献   
2.
Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.  相似文献   
3.
Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia.   总被引:17,自引:0,他引:17  
C E Clancy  Y Rudy 《Nature》1999,400(6744):566-569
Advances in genetics and molecular biology have provided an extensive body of information on the structure and function of the elementary building blocks of living systems. Genetic defects in membrane ion channels can disrupt the delicate balance of dynamic interactions between the ion channels and the cellular environment, leading to altered cell function. As ion-channel defects are typically studied in isolated expression systems, away from the cellular environment where they function physiologically, a connection between molecular findings and the physiology and pathophysiology of the cell is rarely established. Here we describe a single-channel-based Markovian modelling approach that bridges this gap. We achieve this by determining the cellular arrhythmogenic consequences of a mutation in the cardiac sodium channel that can lead to a clinical arrhythmogenic disorder (the long-QT syndrome) and sudden cardiac death.  相似文献   
4.
J S Lebkowski  S Clancy  M P Calos 《Nature》1985,317(6033):169-171
Simian virus 40 (SV40) replicates efficiently in monkey kidney cells. However, we have now found that SV40-based vectors transfected into most human cells replicate poorly, if at all. In contrast, strong SV40 replication is observed in human embryonic kidney (HEK) cells transformed with the adenovirus early region, but not in untransformed HEK cells. Vector replication in adenovirus-transformed cells is dependent on the presence of the SV40 origin of replication and large-T antigen. However, vigorous replication occurs at levels of large-T antigen that are undetectable by immunofluorescence. These data suggest that the adenovirus oncogenes create a replication-permissive environment to which the SV40 replicon responds. Furthermore, replication and gene expression seem to be antagonistic on our vectors. High levels of large-T antigen are observed only when vector replication is blocked by mutations in the gene for large-T antigen or the origin of replication, or by direct inhibition of DNA polymerase with aphidicolin.  相似文献   
5.
The western spruce budworm ( Choristoneura occidentalis Freeman) prefers to feed on flushing buds and current-year needles of Douglas-fir ( Pseudotsuga menziesii [Mirb.] Franco). Budworm larvae will not typically consume older age classes of needles unless all current-year foliage is depleted. We tested the following null hypotheses: (1) budworm larvae can feed on foliage with a wide range of qualities (i.e., current 1-, 2-, or 3-year-old needles) without measurable effects on fitness; and (2) budworm adults do not show any oviposition preference linked to the age of the foliage they fed on as larvae. We used both laboratory and field experiments. There was strong evidence to support rejection of hypothesis 1. Budworm larvae had greater survival from the 4th instar to pupal stage when they fed on current-year foliage (43%-52% survival) versus older age classes of foliage (0-25% survival). Pupae from current-year foliage were also heavier than pupae from ≥ 1-year-old foliage. There was weak evidence to support rejecting hypothesis 2; budworm adults that fed had fed on current-year or 3-year-old foliage as larvae preferred to oviposit on current-year foliage. Similar conclusions were drawn from the laboratory and field experiments.  相似文献   
6.
7.
Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth's stratosphere, and may significantly perturb the chemistry of the Earth's upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号