首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
研究方法   2篇
综合类   3篇
  2011年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
High-resolution mapping of quantitative trait loci in outbred mice   总被引:21,自引:0,他引:21  
Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning.  相似文献   
2.
DeCoursey TE  Morgan D  Cherny VV 《Nature》2003,422(6931):531-534
The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species). Electrons move from intracellular NADPH, across a chain comprising FAD (flavin adenine dinucleotide) and two haems, to reduce extracellular O2 to O2-. NADPH oxidase is electrogenic, generating electron current (I(e)) that is measurable under voltage-clamp conditions. Here we report the complete current-voltage relationship of NADPH oxidase, the first such measurement of a plasma membrane electron transporter. We find that I(e) is voltage-independent from -100 mV to >0 mV, but is steeply inhibited by further depolarization, and is abolished at about +190 mV. It was proposed that H+ efflux mediated by voltage-gated proton channels compensates I(e), because Zn2+ and Cd2+ inhibit both H+ currents and O2- production. Here we show that COS-7 cells transfected with four NADPH oxidase components, but lacking H+ channels, produce O2- in the presence of Zn2+ concentrations that inhibit O2- production in neutrophils and eosinophils. Zn2+ does not inhibit NADPH oxidase directly, but through effects on H+ channels. H+ channels optimize NADPH oxidase function by preventing membrane depolarization to inhibitory voltages.  相似文献   
3.
Merlin--rapid analysis of dense genetic maps using sparse gene flow trees.   总被引:32,自引:0,他引:32  
Efforts to find disease genes using high-density single-nucleotide polymorphism (SNP) maps will produce data sets that exceed the limitations of current computational tools. Here we describe a new, efficient method for the analysis of dense genetic maps in pedigree data that provides extremely fast solutions to common problems such as allele-sharing analyses and haplotyping. We show that sparse binary trees represent patterns of gene flow in general pedigrees in a parsimonious manner, and derive a family of related algorithms for pedigree traversal. With these trees, exact likelihood calculations can be carried out efficiently for single markers or for multiple linked markers. Using an approximate multipoint calculation that ignores the unlikely possibility of a large number of recombinants further improves speed and provides accurate solutions in dense maps with thousands of markers. Our multipoint engine for rapid likelihood inference (Merlin) is a computer program that uses sparse inheritance trees for pedigree analysis; it performs rapid haplotyping, genotype error detection and affected pair linkage analyses and can handle more markers than other pedigree analysis packages.  相似文献   
4.
The endophenotype concept was initially proposed to enhance the power of genetic studies of complex disorders. It is closely related to the genetic component in a liability-threshold model; a perfect endophenotype should have a correlation of 1 with the genetic component of the liability to disease. In reality, a putative endophenotype is unlikely to be a perfect representation of the genetic component of disease liability. The magnitude of the correlation between a putative endophenotype and the genetic co...  相似文献   
5.
Musset B  Smith SM  Rajan S  Morgan D  Cherny VV  Decoursey TE 《Nature》2011,480(7376):273-277
The ion selectivity of pumps and channels is central to their ability to perform a multitude of functions. Here we investigate the mechanism of the extraordinary selectivity of the human voltage-gated proton channel, H(V)1 (also known as HVCN1). This selectivity is essential to its ability to regulate reactive oxygen species production by leukocytes, histamine secretion by basophils, sperm capacitation, and airway pH. The most selective ion channel known, H(V)1 shows no detectable permeability to other ions. Opposing classes of selectivity mechanisms postulate that (1) a titratable amino acid residue in the permeation pathway imparts proton selectivity, or (2) water molecules 'frozen' in a narrow pore conduct protons while excluding other ions. Here we identify aspartate 112 as a crucial component of the selectivity filter of H(V)1. When a neutral amino acid replaced Asp?112, the mutant channel lost proton specificity and became anion-selective or did not conduct. Only the glutamate mutant remained proton-specific. Mutation of the nearby Asp?185 did not impair proton selectivity, indicating that Asp?112 has a unique role. Although histidine shuttles protons in other proteins, when histidine or lysine replaced Asp?112, the mutant channel was still anion-permeable. Evidently, the proton specificity of H(V)1 requires an acidic group at the selectivity filter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号