首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
系统科学   1篇
现状及发展   8篇
研究方法   1篇
综合类   15篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2008年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  1991年   2篇
  1990年   1篇
  1982年   2篇
  1980年   1篇
  1969年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
Lee SH  Broholm C  Ratcliff W  Gasparovic G  Huang Q  Kim TH  Cheong SW 《Nature》2002,418(6900):856-858
Frustrated systems are ubiquitous, and they are interesting because their behaviour is difficult to predict; frustration can lead to macroscopic degeneracies and qualitatively new states of matter. Magnetic systems offer good examples in the form of spin lattices, where all interactions between spins cannot be simultaneously satisfied. Here we report how unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr(2)O(4). Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops, whose directors -- the unique direction along which the spins are aligned, parallel or antiparallel -- govern all low-temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering; the data show that neutrons scatter from hexagonal spin clusters rather than individual spins. The hexagon directors are, to a first approximation, decoupled from each other, and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.  相似文献   
3.
4.
Tetramerization of an RNA oligonucleotide containing a GGGG sequence.   总被引:7,自引:0,他引:7  
J Kim  C Cheong  P B Moore 《Nature》1991,351(6324):331-332
Poly rG can form four-stranded helices. The Hoogsteen-paired quartets of G residues on which such structures depend are so stable that they will form in 5'-GMP solutions, provided that Na+ or K+ are present (see for example, refs 2-4). Telomeric DNA sequences, which are G-rich, adopt four-stranded antiparallel G-quartet conformations in vitro, and parallel tetramerization of G-rich sequences may be involved in meiosis. Here we show that RNAs containing short runs of Gs can also tetramerize. A 19-base oligonucleotide derived from the 5S RNA of Escherichia coli (strand III), 5'GCCGAUGGUAGUGUGGGGU3', forms a K(+)-stabilized tetrameric aggregate that depends on the G residues at its 3' end. This complex is so stable that it would be surprising if similar structures do not occur in nature.  相似文献   
5.
为提高真菌Aspergillus sp.GXIMD02003的曲酸产量,本研究对其利用大米固体培养基发酵的条件进行优化,旨在获得成本低廉的曲酸原料,促进曲酸的工业化生产。研究采用单因素控制变量法考察最佳盐度和最佳发酵时间,通过HPLC法测定曲酸的产量。结果表明真菌Aspergillus sp.GXIMD02003产曲酸的最佳发酵条件为在2%海盐的大米固体培养基中发酵30 d,在此条件下1 000 g大米培养基能够发酵产生24.2 g曲酸。因此,海洋来源真菌Aspergillus sp.GXIMD02003可以作为曲酸的生产菌株,海盐浓度影响该菌株的曲酸代谢。  相似文献   
6.
Houk KN  Cheong PH 《Nature》2008,455(7211):309-313
Most organic and organometallic catalysts have been discovered through serendipity or trial and error, rather than by rational design. Computational methods, however, are rapidly becoming a versatile tool for understanding and predicting the roles of such catalysts in asymmetric reactions. Such methods should now be regarded as a first line of attack in the design of catalysts.  相似文献   
7.
Atomic-scale images of charge ordering in a mixed-valence manganite   总被引:3,自引:0,他引:3  
Renner Ch  Aeppli G  Kim BG  Soh YA  Cheong SW 《Nature》2002,416(6880):518-521
  相似文献   
8.
9.
S R Holbrook  C Cheong  I Tinoco  S H Kim 《Nature》1991,353(6344):579-581
The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.  相似文献   
10.
Johnson ZL  Cheong CG  Lee SY 《Nature》2012,483(7390):489-493
Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4??. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号