首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
系统科学   1篇
现状及发展   3篇
综合类   1篇
  2020年   1篇
  2000年   1篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有5条查询结果,搜索用时 187 毫秒
1
1.
2.
3.

In this article we discuss how an interdisciplinary research team partnered with a variety of stakeholders concerned with and/or affected by the impacts of climate change in the Red River Delta of Vietnam. The research, undertaken from 2016 to 2018, drew upon a wide range of methods to investigate systemically these impacts – with a view to the research inputting into the development of (more) sustainable ways of living. The research solicited various accounts of the experience of climate change in the community, set up learning processes in community meetings, and created an interface with government officials positioned at commune, district, provincial, and national levels. The intention was to offer support towards developing a learning process (broadly defined as including learnings/systemic inquiry across organizational levels of the society) to pursue options for sustainable living. The article offers our post-facto reflections which render more explicit (to ourselves and for the benefit of audiences) how the research team, with Hoang as lead researcher, facilitated the inquiry process towards developing a synthesis which underscored the assets for resilience to climate change and supported interventions to strengthen such (defined) assets.

  相似文献   
4.
5.
Arid ecosystems, which occupy about 20% of the earth's terrestrial surface area, have been predicted to be one of the most responsive ecosystem types to elevated atmospheric CO2 and associated global climate change. Here we show, using free-air CO2 enrichment (FACE) technology in an intact Mojave Desert ecosystem, that new shoot production of a dominant perennial shrub is doubled by a 50% increase in atmospheric CO2 concentration in a high rainfall year. However, elevated CO2 does not enhance production in a drought year. We also found that above-ground production and seed rain of an invasive annual grass increases more at elevated CO2 than in several species of native annuals. Consequently, elevated CO2 might enhance the long-term success and dominance of exotic annual grasses in the region. This shift in species composition in favour of exotic annual grasses, driven by global change, has the potential to accelerate the fire cycle, reduce biodiversity and alter ecosystem function in the deserts of western North America.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号