首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   4篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 890 毫秒
1
1.
Hwang J  Timusk T  Carbotte JP 《Nature》2007,446(7132):E3-E4
The study of bosonic modes that couple to the charge carriers is a key element in understanding superconductivity. Using atomic-resolution scanning-tunnelling microscopy (STM) to extract the spectrum of these modes in the high-temperature superconductor Bi2Sr2CaCu2O(8+delta), Lee et al. find a mode whose frequency does not depend on doping but that changes on isotopic substitution of 16O with 18O. From this, they infer a role for lattice modes (phonons). However, examination of their data reveals a weaker, but distinct, feature that has all the characteristics of the magnetic excitation identified as the bosonic mode in other competing experiments. We therefore suggest that the lattice mode seen by Lee et al. is not relevant to superconductivity and is due to inelastic tunnelling through the insulating oxide layer.  相似文献   
2.
Carbotte SM  Small C  Donnelly K 《Nature》2004,429(6993):743-746
The Earth's mid-ocean ridges display systematic changes in depth and shape, which subdivide the ridges into discrete spreading segments bounded by transform faults and smaller non-transform offsets of the axis. These morphological changes have been attributed to spatial variations in the supply of magma from the mantle, although the origin of the variations is poorly understood. Here we show that magmatic segmentation of ridges with fast and intermediate spreading rates is directly related to the migration velocity of the spreading axis over the mantle. For over 9,500 km of mid-ocean ridge examined, leading ridge segments in the 'hotspot' reference frame coincide with the shallow magmatically robust segments across 86 per cent of all transform faults and 73 per cent of all second-order discontinuities. We attribute this relationship to asymmetric mantle upwelling and melt production due to ridge migration, with focusing of melt towards ridge segments across discontinuities. The model is consistent with variations in crustal structure across discontinuities of the East Pacific Rise, and may explain variations in depth of melting and the distribution of enriched lavas.  相似文献   
3.
Carbotte JP  Schachinger E  Basov DN 《Nature》1999,401(6751):354-356
In conventional superconductors, the most direct evidence of the mechanism responsible for superconductivity comes from tunnelling experiments, which provide a clear picture of the underlying electron-phonon interactions. As the coherence length in conventional superconductors is large, the tunnelling process probes several atomic layers into the bulk of the material; the observed structure in the current-voltage characteristics at the phonon energies gives, through inversion of the Eliashberg equations, the electron-phonon spectral density alpha2F(omega). The situation is different for the high-temperature copper oxide superconductors, where the coherence length (particularly for c-axis tunnelling) can be very short. Because of this, methods such as optical spectroscopy and neutron scattering provide a better route for investigating the underlying mechanism, as they probe bulk properties. Accurate reflection measurements at infrared wavelengths and precise polarized neutron-scattering data are now available for a variety of the copper oxides, and here we show that the conducting carriers (probed by infrared spectroscopy) are strongly coupled to a resonance structure in the spectrum of spin fluctuations (measured by neutron scattering). The coupling strength inferred from those results is sufficient to account for the high transition temperatures of the copper oxides, highlighting a prominent role for spin fluctuations in driving superconductivity in these materials.  相似文献   
4.
The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号