首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
系统科学   1篇
现状及发展   7篇
研究方法   3篇
综合类   27篇
  2018年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1979年   4篇
  1978年   1篇
  1974年   1篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
Sergina NV  Rausch M  Wang D  Blair J  Hann B  Shokat KM  Moasser MM 《Nature》2007,445(7126):437-441
Oncogenic tyrosine kinases have proved to be promising targets for the development of highly effective anticancer drugs. However, tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (HER) family show only limited activity against HER2-driven breast cancers, despite effective inhibition of epidermal growth factor receptor (EGFR) and HER2 in vivo. The reasons for this are unclear. Signalling in trans is a key feature of this multimember family and the critically important phosphatidylinositol-3-OH kinase (PI(3)K)/Akt pathway is driven predominantly through transphosphorylation of the kinase-inactive HER3 (refs 9, 10). Here we show that HER3 and consequently PI(3)K/Akt signalling evade inhibition by current HER-family TKIs in vitro and in tumours in vivo. This is due to a compensatory shift in the HER3 phosphorylation-dephosphorylation equilibrium, driven by increased membrane HER3 expression driving the phosphorylation reaction and by reduced HER3 phosphatase activity impeding the dephosphorylation reaction. These compensatory changes are driven by Akt-mediated negative-feedback signalling. Although HER3 is not a direct target of TKIs, HER3 substrate resistance undermines their efficacy and has thus far gone undetected. The experimental abrogation of HER3 resistance by small interfering RNA knockdown restores potent pro-apoptotic activity to otherwise cytostatic HER TKIs, re-affirming the oncogene-addicted nature of HER2-driven tumours and the therapeutic promise of this oncoprotein target. However, because HER3 signalling is buffered against an incomplete inhibition of HER2 kinase, much more potent TKIs or combination strategies are required to silence oncogenic HER2 signalling effectively. The biologic marker with which to assess the efficacy of HER TKIs should be the transphosphorylation of HER3 rather than autophosphorylation.  相似文献   
2.
Dorsoventral lineage restriction in wing imaginal discs requires Notch.   总被引:2,自引:0,他引:2  
C A Micchelli  S S Blair 《Nature》1999,401(6752):473-476
  相似文献   
3.
Summary The urinary production rate of pregnenolone has been determined for a male subject using 7,7-d2-pregnenolone as an isotopic tracer.To whom correspondence should be addressed.  相似文献   
4.
5.
6.
The mas oncogene encodes an angiotensin receptor   总被引:24,自引:0,他引:24  
T R Jackson  L A Blair  J Marshall  M Goedert  M R Hanley 《Nature》1988,335(6189):437-440
The class of receptors coupled to GTP-binding proteins share a conserved structural motif which is described as a 'seven-transmembrane segment' following the prediction that these hydrophobic segments form membrane-spanning alpha-helices. Identified examples include the mammalian opsins, alpha 1-, alpha 2-, beta 1- and beta 2-adrenergic receptors, the muscarinic receptor family, the 5-HT1C-receptor, and the substance-K receptor. In addition, two mammalian genes have been identified that code for predicted gene products with sequence similarity to these receptors, but whose ligand specificity is unknown namely, G21 and the mas oncogene. The mas oncogene shows the greatest sequence similarity to the substance-K receptor, and on this basis it was predicted that it would encode a peptide receptor with mitogenic activity which would act through the inositol lipid signalling pathways. The mas oncogene product was transiently expressed in Xenopus oocytes, and stably expressed in a transfected mammalian cell line. The results demonstrate that the mas gene product is a functional angiotensin receptor.  相似文献   
7.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase (SCFcyclin F) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin–proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin FS621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin FWT. Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin FS621G-expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin FS621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal–lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin FS621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is implicated in ALS pathogenesis.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号