首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2003年   1篇
  2000年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Bennett MJ  Lebrón JA  Bjorkman PJ 《Nature》2000,403(6765):46-53
HFE is related to major histocompatibility complex (MHC) class I proteins and is mutated in the iron-overload disease hereditary haemochromatosis. HFE binds to the transferrin receptor (TfR), a receptor by which cells acquire iron-loaded transferrin. The 2.8 A crystal structure of a complex between the extracellular portions of HFE and TfR shows two HFE molecules which grasp each side of a twofold symmetric TfR dimer. On a cell membrane containing both proteins, HFE would 'lie down' parallel to the membrane, such that the HFE helices that delineate the counterpart of the MHC peptide-binding groove make extensive contacts with helices in the TfR dimerization domain. The structures of TfR alone and complexed with HFE differ in their domain arrangement and dimer interfaces, providing a mechanism for communicating binding events between TfR chains. The HFE-TfR complex suggests a binding site for transferrin on TfR and sheds light upon the function of HFE in regulating iron homeostasis.  相似文献   
2.
Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens. Many residues critical for T-cell recognition of HLA are located in this site, in positions allowing them to serve as ligands to processed antigens. These findings have implications for how the products of the major histocompatibility complex (MHC) recognize foreign antigens.  相似文献   
3.
Structure of the human class I histocompatibility antigen, HLA-A2   总被引:61,自引:0,他引:61  
The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel beta-strands topped by alpha-helices. A large groove between the alpha-helices provides a binding site for processed foreign antigens. An unknown 'antigen' is found in this site in crystals of purified HLA-A2.  相似文献   
4.
Herr AB  Ballister ER  Bjorkman PJ 《Nature》2003,423(6940):614-620
Immunoglobulin-alpha (IgA)-bound antigens induce immune effector responses by activating the IgA-specific receptor FcalphaRI (CD89) on immune cells. Here we present crystal structures of human FcalphaRI alone and in a complex with the Fc region of IgA1 (Fcalpha). FcalphaRI has two immunoglobulin-like domains that are oriented at approximately right angles to each other. Fcalpha resembles the Fcs of immunoglobulins IgG and IgE, but has differently located interchain disulphide bonds and external rather than interdomain N-linked carbohydrates. Unlike 1:1 FcgammaRIII:IgG and Fc epsilon RI:IgE complexes, two FcalphaRI molecules bind each Fcalpha dimer, one at each Calpha2-Calpha3 junction. The FcalphaRI-binding site on IgA1 overlaps the reported polymeric immunoglobulin receptor (pIgR)-binding site, which might explain why secretory IgA cannot initiate phagocytosis or bind to FcalphaRI-expressing cells in the absence of an integrin co-receptor.  相似文献   
5.
Specificity pockets for the side chains of peptide antigens in HLA-Aw68   总被引:41,自引:0,他引:41  
  相似文献   
6.
Class II and class I histocompatibility molecules allow T cells to recognize 'processed' polypeptide antigens. The two polypeptide chains of class II molecules, alpha and beta, are each composed of two domains (for review see ref. 6); the N-terminal domains of each, alpha 1 and beta 1, are highly polymorphic and appear responsible for binding peptides at what appears to be a single site and for being recognized by MHC-restricted antigen-specific T cells. Recently, the three-dimensional structure of the foreign antigen binding site of a class I histocompatibility antigen has been described. Because a crystal structure of a class II molecule is not available, we have sought evidence in class II molecules for the structural features observed in the class I binding site by comparing the patterns of conserved and polymorphic residues of twenty-six class I and fifty-four class II amino acid sequences. The hypothetical class II foreign-antigen binding site we present is consistent with mutation experiments and provides a structural framework for proposing peptide binding models to help understand recent peptide binding data.  相似文献   
7.
T-cell antigen receptor genes and T-cell recognition   总被引:269,自引:0,他引:269  
M M Davis  P J Bjorkman 《Nature》1988,334(6181):395-402
The four distinct T-cell antigen receptor polypeptides (alpha, beta, gamma, delta) form two different heterodimers (alpha:beta and gamma:delta) that are very similar to immunoglobulins in primary sequence, gene organization and modes of rearrangement. Whereas antibodies have both soluble and membrane forms that can bind to antigens alone, T-cell receptors exist only on cell surfaces and recognize antigen fragments only when they are embedded in major histocompatibility complex (MHC) molecules. Patterns of diversity in T-cell receptor genes together with structural features of immunoglobulin and MHC molecules suggest a model for how this recognition might occur. This view of T-cell recognition has implications for how the receptors might be selected in the thymus and how they (and immunoglobulins) may have arisen during evolution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号