首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2020年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's earliest biosphere. Despite their evolutionary significance, little is known about stromatolite formation, especially the relative roles of microbial and environmental factors in stromatolite accretion. Here we show that growth of modern marine stromatolites represents a dynamic balance between sedimentation and intermittent lithification of cyanobacterial mats. Periods of rapid sediment accretion, during which stromatolite surfaces are dominated by pioneer communities of gliding filamentous cyanobacteria, alternate with hiatal intervals. These discontinuities in sedimentation are characterized by development of surface films of exopolymer and subsequent heterotrophic bacterial decomposition, forming thin crusts of microcrystalline carbonate. During prolonged hiatal periods, climax communities develop, which include endolithic coccoid cyanobacteria. These coccoids modify the sediment, forming thicker lithified laminae. Preservation of lithified layers at depth creates millimetre-scale lamination. This simple model of modern marine stromatolite growth may be applicable to ancient stromatolites.  相似文献   
2.
3.
T M Hoehler  B M Bebout  D J Des Marais 《Nature》2001,412(6844):324-327
The advent of oxygenic photosynthesis on Earth may have increased global biological productivity by a factor of 100-1,000 (ref. 1), profoundly affecting both geochemical and biological evolution. Much of this new productivity probably occurred in microbial mats, which incorporate a range of photosynthetic and anaerobic microorganisms in extremely close physical proximity. The potential contribution of these systems to global biogeochemical change would have depended on the nature of the interactions among these mat microorganisms. Here we report that in modern, cyanobacteria-dominated mats from hypersaline environments in Guerrero Negro, Mexico, photosynthetic microorganisms generate H2 and CO-gases that provide a basis for direct chemical interactions with neighbouring chemotrophic and heterotrophic microbes. We also observe an unexpected flux of CH4, which is probably related to H2-based alteration of the redox potential within the mats. These fluxes would have been most important during the nearly 2-billion-year period during which photosynthetic mats contributed substantially to biological productivity-and hence, to biogeochemistry-on Earth. In particular, the large fluxes of H2 that we observe could, with subsequent escape to space, represent a potentially important mechanism for oxidation of the primitive oceans and atmosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号