首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2007年   2篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 156 毫秒
1
1.
One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.  相似文献   
2.
The structure of Venus' middle atmosphere and ionosphere   总被引:1,自引:0,他引:1  
The atmosphere and ionosphere of Venus have been studied in the past by spacecraft with remote sensing or in situ techniques. These early missions, however, have left us with questions about, for example, the atmospheric structure in the transition region from the upper troposphere to the lower mesosphere (50-90 km) and the remarkably variable structure of the ionosphere. Observations become increasingly difficult within and below the global cloud deck (<50 km altitude), where strong absorption greatly limits the available investigative spectrum to a few infrared windows and the radio range. Here we report radio-sounding results from the first Venus Express Radio Science (VeRa) occultation season. We determine the fine structure in temperatures at upper cloud-deck altitudes, detect a distinct day-night temperature difference in the southern middle atmosphere, and track day-to-day changes in Venus' ionosphere.  相似文献   
3.
Hyperion is Saturn's largest known irregularly shaped satellite and the only moon observed to undergo chaotic rotation. Previous work has identified Hyperion's surface as distinct from other small icy objects but left the causes unsettled. Here we report high-resolution images that reveal a unique sponge-like appearance at scales of a few kilometres. Mapping shows a high surface density of relatively well-preserved craters two to ten kilometres across. We have also determined Hyperion's size and mass, and calculated the mean density as 544 +/- 50 kg m(-3), which indicates a porosity of >40 per cent. The high porosity may enhance preservation of craters by minimizing the amount of ejecta produced or retained, and accordingly may be the crucial factor in crafting this unusual surface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号