首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
教育与普及   1篇
现状及发展   2篇
综合类   4篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
基于NPLS技术的超声速混合层流动控制实验研究   总被引:2,自引:0,他引:2  
在对流马赫数(Mc)为0.5的超声速混合层风洞中,通过在两股气流的分隔板上添加扰动片的方式,对超声速混合层进行了流动控制的实验研究。比较了不同尺寸下,二维扰动片和三维扰动片对混合层流动控制的效果。采用基于纳米粒子的平面激光散射技术(NPLS)进行流动显示,所得NPLS图像清楚地再现了混合层的流动结构,为比较流动控制的效果提供了有力的实验依据。流动控制的结果表明:二维扰动控制增强了混合层的二维特性,有利于推迟混合层的转捩;三维扰动控制增强了混合层的三维特性,使混合层转捩提前。采用NPLS技术对混合层内的三维结构进行了流动显示,在三维扰动控制下,混合层内部出现明显的H-型分布的A涡结构。  相似文献   
2.
基于纳米粒子的超声速流动成像   总被引:1,自引:0,他引:1  
由于超声速流动受到可压缩性、激波、不稳定性以及湍流等因素的影响, 现有流动显示与成像技术在流场结构的高时空分辨率和高信噪比测量中存在一定的问题. 为此, 本文提出了基于纳米粒子的平面激光散射技术(NPLS), 该技术以纳米粒子作为示踪粒子, 以脉冲平面激光作为光源, 通过CCD记录流场中的粒子图像实现超声速流动的高分辨率成像. 根据多相流体动力学理论和斜激波校准实验研究了纳米粒子在超声速流动中的跟随性问题. 根据光散射理论深入分析了影响纳米粒子散射光强的各种因素. 理论和实验研究结果表明, 纳米粒子的动力学行为和光散射特性大大提高了NPLS技术的时空分辨率和信噪比, 能够再现激波、膨胀波、马赫盘、边界层、滑移线和混合层共存的精细流场结构.  相似文献   
3.
由于超声速密度场测量十分困难,基于实验图像的超声速混合层流场的多分辨率分析一直难以实现.本文利用新近提出的基于纳米粒子的平面激光散射技术,以较高的时空分辨率测量了超声速混合层密度场结构.根据混合层拟序结构的动力学特性,以Taylor的时空转换假设为基础,利用小波分析研究了密度脉动信号和密度场图像的多分辨率特征.密度脉动信号的小波近似系数较好地反映了不同尺度下密度脉动信号的特征,相应的细节系数在一定程度上反映了各层平滑近似的差值.超声速混合层密度脉动信号不同于周期性的正弦信号,而更类似于具有分形特征的Koch曲线信号,在各个尺度上都具有一定的相似性,体现了混合层流场的分形特征.密度场图像的二维小波分解与重构给出了不同尺度的近似与细节信号,有效地分辨了不同尺度下流场的特征结构.  相似文献   
4.
受激波、湍流等多种因素的影响,超声速流动的密度场在空间和时间上呈现出明显的不均匀性和非定常性,给测量带来困难.现有超声速密度场测量方法存在着时空分辨率不高、测量三维密度场能力有限或信噪比低等问题,我们基于NPLS技术(Nano-based planar laser scattering,基于纳米技术的平面激光散射),提出了一种新的超声速密度场测量方法.该方法通过校准NPLS图像灰度与流场当地密度的关系,可测量超声速三维流场某一截面上时间相关的瞬态密度分布.NPLS方法具有高时空分辨率和高信噪比等特点,我们提出的以NPLS为基础的新的超声速密度场测量方法能很好地测量超声速流场中激波结构和复杂涡系结构带来的密度变化.作为应用实例,我们采用该方法对超声速光学头罩对称面密度场进行了测量,测量结果空间分辨率达到93.2μm/pixel,再现了激波、湍流边界层等精细流场结构;对比时间间隔5μs的测量结果,可得出密度场随时间的演化规律.  相似文献   
5.
激波与湍流相互作用的实验研究   总被引:4,自引:0,他引:4  
在超声速湍流混合层风洞中, 以NPLS技术为基础研究了激波与湍流的相互作用, 观察到了斜激波与湍流边界层的相互作用以及湍流混合层中的大涡对斜激波的影响. 所得到的NPLS实验图像不仅再现了复杂的流场结构, 而且不同图像之间还具有时间相关性. 在NPLS图像基础上探讨了激波与湍流相互作用的规律.  相似文献   
6.
超声速混合层的气动光学畸变与抖动严重恶化其光学性能, 但现有测量技术限制了相关研究的时空分辨率. 通过系统集成与开发, 提出了基于背景纹影(background orient schlieren, BOS)矢量场的高分辨率全场气动光学畸变与抖动测量方法, 分析了BOS的系统结构、灵敏度与分辨率等基本问题. 利用BOS研究了超声速混合层流向结构的气动光学畸变与抖动, 定量化不稳定涡运动造成的气动光学效应, 利用时间相关技术确定了气动光学抖动效应的时间尺度. 超声速混合层展向结构的畸变场展示了光线穿越超声速混合层流场所出现的条带型畸变结构, 这种结构是制约其光学性能的主要瓶颈之一. 气动光学畸变与抖动效应的定量化为超声速混合层光学应用提供了重要的实验依据.  相似文献   
7.
超声速湍流混合层实验图像的分形度量   总被引:2,自引:0,他引:2  
以高时空分辨率的纳米平面激光散射(NPLS)实验技术为基础,在SML-1风洞中完成了超声速混合层的流动显示实验.相应的实验图像清晰地再现了层流、转捩及湍流区的流场结构,空间分辨率满足分形度量的要求.给出并比较了测量分形维数的两种常用方法,采用计盒维数法测量了超声速混合层转捩区和完全发展湍流区的分形维数.转捩区的分形维数随着湍流脉动的增强而增加.完全发展湍流区的分形维数并不会因为流场结构不同而有较大的变化,表面上杂乱无章的湍流界面具有基本相同的分形维数,体现了湍流流动的自相似性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号