首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   7篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
为了研究自吸离心泵蜗壳内瞬态流动特性,分别对有、无回流孔时的模型泵进行了三维非定常流动数值模拟,得到了蜗壳内压力脉动特性和蜗壳回流孔处的瞬态流动特性.研究结果表明:回流孔的存在使蜗壳内压力脉动更加剧烈多变;蜗壳内最大幅值监测点处的蜗壳断面上,存在强度较大、位置对称、大小不等的反向二次流漩涡;回流孔向蜗壳的流出口处存在较大的涡量,且在此处的蜗壳断面和其垂直截面内都有随时间周期性变化的漩涡流动结构;有回流孔时的最大脉动幅值在0.8、1.0和1.2倍设计流量工况下比无回流孔时相应工况下的幅值分别增大35.5%、13.7%和19.6%.  相似文献   
2.
船用柴油机阻燃式防爆阀的压力降分析   总被引:1,自引:0,他引:1  
提出一种阻燃式防爆阀的压力降分析方法.通过分析阻燃式防爆阀的结构和工作原理,建立了数值分析模型.借助计算流体力学技术,分析了不同的入口温度和入口压力对阀内压力分布的影响.结果显示,入口温度对阀内压力分布的影响不大,入口压力对阀内的压力分布有影响.拟合不同入口压力时基本单元截面的压力值,得到各截面的压力与入口压力、基本单元数的函数关系.该函数关系能够有效地反映阀内的压力降趋势,计算出各基本单元截面的压力值,从而可以指导具体的阻燃式防爆阀的设计.  相似文献   
3.
为了研究多因素耦合对射流表面减阻特性的影响,运用可拓学基本原理建立主流场速度、射流速度、射流孔高排布、射流孔底排布等特征耦元及其耦合方式的可拓模型,利用标准k-ε湍流模型对射流表面多因素耦合条件下的减阻特性进行数值模拟,分析射流表面黏性阻力和减阻率减小的原因,以及射流表面多因素耦合对射流孔附近壁面流域边界层的控制行为.结果表明:射流表面多因素耦合的减阻效果较好,最大减阻率为27.69%;多因素耦合条件下的射流表面改变了壁面剪应力分布,影响了边界层的结构,同时,在射流孔下游形成的漩涡改变了边界层的厚度,导致壁面黏性阻力降低,从而使得射流表面具有较好的减阻效果.  相似文献   
4.
圆形非光滑表面叶片对离心泵空化特性的影响   总被引:1,自引:0,他引:1  
为了提高离心泵的抗空化特性,基于仿生学原理,在离心泵叶片最容易发生空化的吸力面处布置圆形仿生非光滑表面结构.采用数值模拟方法分析不同直径的圆形非光滑表面叶片的离心泵在不同空化余量下的外特性、空泡体积、湍动能及压力分布特性,研究圆形非光滑表面叶片对离心泵空化性能的影响.结果表明:圆形凸起直径为0.5 mm和1.0 mm的圆形非光滑表面叶片离心泵的扬程、效率较高,接近光滑表面叶片;在严重空化时,圆形凸起直径为1.0 mm的离心泵空泡体积最小,其叶轮中截面低压区小,压力梯度大,叶片吸力面近壁面处湍动能增加,使得分离引起的压差阻力减小,对空化产生较好的抑制作用.  相似文献   
5.
针对射流表面流场特性,以回转体的U-PVC管为实验样件载体,在其表面上加工出按菱形排布的射流孔结构.在射流表面减阻测试实验平台上,对光滑表面和不同射流孔排布方式的射流表面所受摩擦扭矩进行模型实验,分析射流孔排布、射流速度、旋转速度等因素对射流表面减阻率的影响,研究射流孔不同排布方式下射流表面减阻特性.结果表明:不同排布方式的实验样件射流表面具有较好减阻效果,射流孔菱形排布的两个对角线均能影响射流表面减阻特性.  相似文献   
6.
TH30054泵试验中常见的错误操作及解决方法[刊]/牟介刚(沈阳水泵研究所)//水泥技术──1995,4(2).29~32.28TH3泵产品的试验是一项涉及多种专业知识的工作。本文概述了泵试验中常见的错误操作及解决方法,以开式台手动试验为例说明性能...  相似文献   
7.
为了分析非光滑表面对离心泵性能的影响,基于仿生凹坑表面的减阻特性,将凹坑型非光滑单元体排布于离心泵叶片的工作面,建立具有非光滑表面的叶轮离心泵的流动减阻特性分析模型,通过RNGk-ε湍流模型对离心泵内部流场进行数值模拟,分析具有非光滑表面叶轮的流动减阻特性,研究不同流量下非光滑表面对叶片近壁面的速度分布、剪应力和离心泵内部流场的影响.结果表明:凹坑型非光滑表面能够降低因黏性阻力产生的叶轮扭矩,其扭矩的最大降幅为5.8%;非光滑表面能够有效控制叶片近壁面边界层的流体流动,减小叶片的壁面剪应力;凹坑型非光滑表面能够降低离心泵叶轮内部流体的湍动程度,减小湍动产生的能量耗散,使叶轮内部的流体流动更加稳定并提高离心泵的效率.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号