首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   12篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1991年   2篇
  1985年   1篇
  1971年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有15条查询结果,搜索用时 78 毫秒
1.
J A Wu  J L Manley 《Nature》1991,352(6338):818-821
Splicing of pre-messenger RNA in eukaryotic cells occurs in a multicomponent complex termed the spliceosome, which contains small nuclear ribonucleoprotein particles (snRNPs), protein factors and substrate pre-mRNA. Assembly of the spliceosome involves the stepwise binding of snRNPs and protein factors to the pre-mRNA through a poorly understood mechanism which probably involves specific RNA-RNA, RNA-protein and protein-protein interactions. Of particular interest are the interactions between snRNPs, which are likely to be important not only for assembly of the spliceosome but also for catalysis. U1 snRNP interacts with the 5' splice site and U2 snRNP with the branch site of the pre-mRNA; both of these interactions involve Watson-Crick base pairing. But very little is known about how other factors such as the U4/U6 and U5 snRNPs reach the spliceosome and function in splicing. Here we report evidence that U6 snRNA interacts directly with U2 snRNA by a mechanism involving base-pairing, and that this interaction can be necessary for splicing of a mammalian pre-mRNA in vivo.  相似文献   
2.
Huntington disease (HD), an autosomal dominant, progressive neurodegenerative disorder, is caused by an expanded CAG repeat sequence leading to an increase in the number of glutamine residues in the encoded protein. The normal CAG repeat range is 5-36, whereas 38 or more repeats are found in the diseased state; the severity of disease is roughly proportional to the number of CAG repeats. HD shows anticipation, in which subsequent generations display earlier disease onsets due to intergenerational repeat expansion. For longer repeat lengths, somatic instability of the repeat size has been observed both in human cases at autopsy and in transgenic mouse models containing either a genomic fragment of human HD exon 1 (ref. 9) or an expanded repeat inserted into the endogenous mouse gene Hdh (ref. 10). With increasing repeat number, the protein changes conformation and becomes increasingly prone to aggregation, suggesting important functional correlations between repeat length and pathology. Because dinucleotide repeat instability is known to increase when the mismatch repair enzyme MSH2 is missing, we examined instability of the HD CAG repeat by crossing transgenic mice carrying exon 1 of human HD (ref. 16) with Msh2-/- mice. Our results show that Msh2 is required for somatic instability of the CAG repeat.  相似文献   
3.
A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy   总被引:19,自引:0,他引:19  
Spinal muscular atrophy (SMA) is a relatively common neurodegenerative disease caused by homozygous loss of the survival motor neuron 1 (SMN1) gene. Humans possess a linked, nearly identical gene, SMN2, which produces a functional SMN protein but at levels insufficient to compensate for loss of SMN1 (refs. 1,2). A C/T transition at position +6 in exon 7 is all that differentiates the two genes, but this is sufficient to prevent efficient exon 7 splicing in SMN2 (refs. 2,3). Here we show that the C/T transition functions not to disrupt an exonic splicing enhancer (ESE) in SMN1 (ref. 4), as previously suggested, but rather to create an exonic splicing silencer (ESS) in SMN2. We show that this ESS functions as a binding site for a known repressor protein, hnRNP A1, which binds to SMN2 but not SMN1 exon 7 RNA. We establish the physiological importance of these results by using small interfering RNAs to reduce hnRNP A protein levels in living cells and show that this results in efficient SMN2 exon 7 splicing. Our findings not only define a new mechanism underlying the inefficient splicing of SMN2 exon 7 but also illustrate more generally the remarkable sensitivity and precision that characterizes control of mRNA splicing.  相似文献   
4.
Distribution of mucopolysaccharides in the human vascular tree   总被引:1,自引:0,他引:1  
G Manley  J Hawksworth 《Nature》1965,206(989):1152-1153
  相似文献   
5.
Xu Y  Tao X  Shen B  Horng T  Medzhitov R  Manley JL  Tong L 《Nature》2000,408(6808):111-115
Toll-like receptors (TLRs) and the interleukin-1 receptor superfamily (IL-1Rs) are integral to both innate and adaptive immunity for host defence. These receptors share a conserved cytoplasmic domain, known as the TIR domain. A single-point mutation in the TIR domain of murine TLR4 (Pro712His, the Lps(d) mutation) abolishes the host immune response to lipopolysaccharide (LPS), and mutation of the equivalent residue in TLR2, Pro681His, disrupts signal transduction in response to stimulation by yeast and gram-positive bacteria. Here we report the crystal structures of the TIR domains of human TLR1 and TLR2 and of the Pro681His mutant of TLR2. The structures have a large conserved surface patch that also contains the site of the Lps(d) mutation. Mutagenesis and functional studies confirm that residues in this surface patch are crucial for receptor signalling. The Lps(d) mutation does not disturb the structure of the TIR domain itself. Instead, structural and functional studies indicate that the conserved surface patch may mediate interactions with the down-stream MyD88 adapter molecule, and that the Lps(d) mutation may abolish receptor signalling by disrupting this recruitment.  相似文献   
6.
Primary structure and expression of bovine poly(A) polymerase   总被引:26,自引:0,他引:26  
T Raabe  F J Bollum  J L Manley 《Nature》1991,353(6341):229-234
Poly(A) polymerase has a critical role in the synthesis of messenger RNA in eukaryotic cells. The isolation and characterization of complementary DNAs encoding bovine poly(A) polymerase is described here. The predicted sequences of the mRNA and protein reveal features that provide insights into how the enzyme functions and how it might be regulated. Poly(A) polymerase expressed from a cloned cDNA is fully functional in in vitro assays, and mutational analyses have identified a putative regulatory domain that enhances, but is not essential for, activity.  相似文献   
7.
Splicing-related catalysis by protein-free snRNAs   总被引:18,自引:0,他引:18  
Valadkhan S  Manley JL 《Nature》2001,413(6857):701-707
Removal of intervening sequences from eukaryotic messenger RNA precursors is carried out by the spliceosome, a complex assembly of five small nuclear RNAs (snRNAs) and a large number of proteins. Although it has been suggested that the spliceosome might be an RNA enzyme, direct evidence for this has been lacking, and the identity of the catalytic domain of the spliceosome is unknown. Here we show that a protein-free complex of two snRNAs, U2 and U6, can bind and position a small RNA containing the sequence of the intron branch site, and activate the branch adenosine to attack a catalytically critical domain of U6 in a reaction that is related to the first step of splicing. Our data provide direct evidence for the catalytic potential of spliceosomal snRNAs.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号