首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
系统科学   3篇
现状及发展   16篇
研究方法   10篇
综合类   15篇
  2016年   2篇
  2012年   7篇
  2011年   3篇
  2010年   1篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1992年   3篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1974年   2篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.  相似文献   
2.
The metabolic pathways that produce 11-cis retinal are important for vision because this retinoid is the chromophore residing in rhodopsin and the cone opsins. The all-trans retinal that is generated after cone and rod photopigments absorb photons of light is recycled back to 11-cis retinal by the retinal pigment epithelium and Müller cells of the retina. Several of the enzymes involved have recently been purified and molecularly cloned; here we focus on 11-cis retinol dehydrogenase (encoded by the gene RDH5; chromosome 12q13-14; ref. 4), the first cloned enzyme in this pathway. This microsomal enzyme is abundant in the retinal pigment epithelium, where it has been proposed to catalyse the conversion of 11-cis retinol to 11-cis retinal. We evaluated patients with hereditary retinal diseases featuring subretinal spots (retinitis punctata albescens and fundus albipunctatus) and patients with typical dominant or recessive retinitis pigmentosa for mutations in RDH5. Mutations were found only in two unrelated patients, both with fundus albipunctatus; they segregated with disease in the respective families. Recombinant mutant 11-cis retinol dehydrogenases had reduced activity compared with recombinant enzyme with wild-type sequence. Our results suggest that mutant alleles in RDH5 are a cause of fundus albipunctatus, a rare form of stationary night blindness characterized by a delay in the regeneration of cone and rod photopigments.  相似文献   
3.
Zusammenfassung Diasone® Sodium hemmt die Aufnahme von Radiojod in der Schilddrüse der Ratte. Diese Wirkung entsteht wahrscheinlich durch Hemmung der Jodid-Peroxydase.  相似文献   
4.
5.
In this text, a French school of systems thought is evaluated with reference to its contribution to postmodernity. The main conclusion is that this system provides some pertinent contribution but that there are also some domains where it does not provide much help. Both these domains are identified and discussed. The text starts with a discussion of the postmodern challenge. This is followed by a presentation and critical evaluation of the theory under consideration. The latter gives rise to the Discussion and Conclusion.  相似文献   
6.
7.
Summary Cow heart conducting cells characteristically contain cytoplasmic intermediate-sized filaments. We report here the preparation of a specific antibody to a 55,000 dalton protein of isolated cow Purkinje fibres. Confirmation has been obtained that these filaments consist of the 55,000 dalton protein, using the indirect immunofluorescence technique. Crossreaction is seen with vascular endothelium and smooth muscle cells of various origin, suggesting close identity of different types of intermediate-sized filaments.  相似文献   
8.
Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.   总被引:19,自引:0,他引:19  
Heparin is a sulphated polysaccharide, synthesized exclusively by connective-tissue-type mast cells and stored in the secretory granules in complex with histamine and various mast-cell proteases. Although heparin has long been used as an antithrombotic drug, endogenous heparin is not present in the blood, so it cannot have a physiological role in regulating blood coagulation. The biosynthesis of heparin involves a series of enzymatic reactions, including sulphation at various positions. The initial modification step, catalysed by the enzyme glucosaminyl N-deacetylase/N-sulphotransferase-2, NDST-2, is essential for the subsequent reactions. Here we report that mice carrying a targeted disruption of the gene encoding NDST-2 are unable to synthesize sulphated heparin. These NDST-2-deficient mice are viable and fertile but have fewer connective-tissue-type mast cells; these cells have an altered morphology and contain severely reduced amounts of histamine and mast-cell proteases. Our results indicate that one site of physiological action for heparin could be inside connective-tissue-type mast cells, where its absence results in severe defects in the secretory granules.  相似文献   
9.
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10(-10)) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders.  相似文献   
10.
Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy.   总被引:19,自引:0,他引:19  
The mitochondrial deoxyribonucleotide (dNTP) pool is separated from the cytosolic pool because the mitochondria inner membrane is impermeable to charged molecules. The mitochondrial pool is maintained by either import of cytosolic dNTPs through dedicated transporters or by salvaging deoxynucleosides within the mitochondria; apparently, enzymes of the de novo dNTP synthesis pathway are not present in the mitochondria. In non-replicating cells, where cytosolic dNTP synthesis is down-regulated, mtDNA synthesis depends solely on the mitochondrial salvage pathway enzymes, the deoxyribonucleosides kinases. Two of the four human deoxyribonucleoside kinases, deoxyguanosine kinase (dGK) and thymidine kinase-2 (TK2), are expressed in mitochondria. Human dGK efficiently phosphorylates deoxyguanosine and deoxyadenosine, whereas TK2 phosphorylates deoxythymidine, deoxycytidine and deoxyuridine. Here we identify two mutations in TK2, histidine 90 to asparagine and isoleucine 181 to asparagine, in four individuals who developed devastating myopathy and depletion of muscular mitochondrial DNA in infancy. In these individuals, the activity of TK2 in muscle mitochondria is reduced to 14-45% of the mean value in healthy control individuals. Mutations in TK2 represent a new etiology for mitochondrial DNA depletion, underscoring the importance of the mitochondrial dNTP pool in the pathogenesis of mitochondrial depletion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号