首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
现状及发展   1篇
综合类   1篇
  2011年   1篇
  1983年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Diphtheria toxin binds to Cibacron Blue-Agarose and may be eluted by increasing the ionic strength of the elution buffer. Experiments using difference spectroscopy showed that the interaction between toxin and dye is ionic rather than hydrophobic, and therefore it is of a different nature with respect to that usually found in nucleotide-requiring enzymes.  相似文献   
2.
Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin?2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin?2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin?2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin?2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号