首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
现状及发展   1篇
综合类   2篇
  2014年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Under physiological and pathological conditions, extracellular vesicles (EVs) are present in the extracellular compartment simultaneously with soluble mediators. We hypothesized that cytokine effects may be modulated by EVs, the recently recognized conveyors of intercellular messages. In order to test this hypothesis, human monocyte cells were incubated with CCRF acute lymphoblastic leukemia cell line-derived EVs with or without the addition of recombinant human TNF, and global gene expression changes were analyzed. EVs alone regulated the expression of numerous genes related to inflammation and signaling. In combination, the effects of EVs and TNF were additive, antagonistic, or independent. The differential effects of EVs and TNF or their simultaneous presence were also validated by Taqman assays and ELISA, and by testing different populations of purified EVs. In the case of the paramount chemokine IL-8, we were able to demonstrate a synergistic upregulation by purified EVs and TNF. Our data suggest that neglecting the modulating role of EVs on the effects of soluble mediators may skew experimental results. On the other hand, considering the combined effects of cytokines and EVs may prove therapeutically useful by targeting both compartments at the same time.  相似文献   
2.
Global biodiversity patterns of marine phytoplankton and zooplankton   总被引:2,自引:0,他引:2  
Irigoien X  Huisman J  Harris RP 《Nature》2004,429(6994):863-867
Although the oceans cover 70% of the Earth's surface, our knowledge of biodiversity patterns in marine phytoplankton and zooplankton is very limited compared to that of the biodiversity of plants and herbivores in the terrestrial world. Here, we present biodiversity data for marine plankton assemblages from different areas of the world ocean. Similar to terrestrial vegetation, marine phytoplankton diversity is a unimodal function of phytoplankton biomass, with maximum diversity at intermediate levels of phytoplankton biomass and minimum diversity during massive blooms. Contrary to expectation, we did not find a relation between phytoplankton diversity and zooplankton diversity. Zooplankton diversity is a unimodal function of zooplankton biomass. Most strikingly, these marine biodiversity patterns show a worldwide consistency, despite obvious differences in environmental conditions of the various oceanographic regions. These findings may serve as a new benchmark in the search for global biodiversity patterns of plants and herbivores.  相似文献   
3.
Copepod hatching success in marine ecosystems with high diatom concentrations   总被引:22,自引:0,他引:22  
Diatoms dominate spring bloom phytoplankton assemblages in temperate waters and coastal upwelling regions of the global ocean. Copepods usually dominate the zooplankton in these regions and are the prey of many larval fish species. Recent laboratory studies suggest that diatoms may have a deleterious effect on the success of copepod egg hatching. These findings challenge the classical view of marine food-web energy flow from diatoms to fish by means of copepods. Egg mortality is an important factor in copepod population dynamics, thus, if diatoms have a deleterious in situ effect, paradoxically, high diatom abundance could limit secondary production. Therefore, the current understanding of energy transfer from primary production to fisheries in some of the most productive and economically important marine ecosystems may be seriously flawed. Here we present in situ estimates of copepod egg hatching success from twelve globally distributed areas, where diatoms dominate the phytoplankton assemblage. We did not observe a negative relationship between copepod egg hatching success and either diatom biomass or dominance in the microplankton in any of these regions. The classical model for diatom-dominated system remains valid.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号