首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   1篇
系统科学   3篇
理论与方法论   1篇
现状及发展   35篇
研究方法   26篇
综合类   58篇
自然研究   3篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   10篇
  2011年   18篇
  2010年   5篇
  2009年   1篇
  2008年   9篇
  2007年   13篇
  2006年   12篇
  2005年   6篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  1998年   1篇
  1993年   1篇
  1976年   2篇
  1974年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有126条查询结果,搜索用时 218 毫秒
1.
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.  相似文献   
2.
3.
Neutrophils are being increasingly recognized as an important element in tumor progression. They have been shown to exert important effects at nearly every stage of tumor progression with a number of studies demonstrating that their presence is critical to tumor development. Novel aspects of neutrophil biology have recently been elucidated and its contribution to tumorigenesis is only beginning to be appreciated. Neutrophil extracellular traps (NETs) are neutrophil-derived structures composed of DNA decorated with antimicrobial peptides. They have been shown to trap and kill microorganisms, playing a critical role in host defense. However, their contribution to tumor development and metastasis has recently been demonstrated in a number of studies highlighting NETs as a potentially important therapeutic target. Here, studies implicating NETs as facilitators of tumor progression and metastasis are reviewed. In addition, potential mechanisms by which NETs may exert these effects are explored. Finally, the ability to target NETs therapeutically in human neoplastic disease is highlighted.  相似文献   
4.
5.
To identify susceptibility loci for meningioma, we conducted a genome-wide association study of 859 affected individuals (cases) and 704 controls with validation in two independent sample sets totaling 774 cases and 1,764 controls. We identified a new susceptibility locus for meningioma at 10p12.31 (MLLT10, rs11012732, odds ratio = 1.46, P(combined) = 1.88 × 10(-14)). This finding advances our understanding of the genetic basis of meningioma development.  相似文献   
6.
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.  相似文献   
7.
The aim of this paper is to explore an explicit use of the concept of sustainability within transport planning. This paper analyses the concept of sustainability based on a practical approach for a sustainable development of Nordhavn, an area of Copenhagen, exemplifying a complex planning problem. An exploration of the application of the concept of sustainability is carried out using elements of Soft Systems Methodology (SSM). This approach indicates a need to separate the use of sustainability considerations regarding the transport planning ‘process’ from the transport planning ‘results’. The two approaches are related to the planning levels presented by Ulrich (Syst Prac 1(4):415–428, 1988). It was chosen to focus on the understanding of a sustainable transport planning process. This focus is addressed by four stakeholder groups interviewed based on the ‘ought to’ mode of Critical Systems Heuristics (CSH). Finally an outline of some of the factors of a sustainable transport planning process is proposed.  相似文献   
8.
Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced beta-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced beta-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K A(y) and ob/ob (also known as Lep/Lep) mice-two genetic models of obesity-have markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.  相似文献   
9.
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.  相似文献   
10.
Uric acid is the end product of purine metabolism in humans and great apes, which have lost hepatic uricase activity, leading to uniquely high serum uric acid concentrations (200-500 microM) compared with other mammals (3-120 microM). About 70% of daily urate disposal occurs via the kidneys, and in 5-25% of the human population, impaired renal excretion leads to hyperuricemia. About 10% of people with hyperuricemia develop gout, an inflammatory arthritis that results from deposition of monosodium urate crystals in the joint. We have identified genetic variants within a transporter gene, SLC2A9, that explain 1.7-5.3% of the variance in serum uric acid concentrations, following a genome-wide association scan in a Croatian population sample. SLC2A9 variants were also associated with low fractional excretion of uric acid and/or gout in UK, Croatian and German population samples. SLC2A9 is a known fructose transporter, and we now show that it has strong uric acid transport activity in Xenopus laevis oocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号