首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
现状及发展   11篇
研究方法   8篇
综合类   17篇
自然研究   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   7篇
  2010年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  1992年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum.   总被引:39,自引:0,他引:39  
K Sandvig  O Garred  K Prydz  J V Kozlov  S H Hansen  B van Deurs 《Nature》1992,358(6386):510-512
Shiga toxin and some other protein toxins that act on targets in the cytosol have previously been shown to enter the trans-Golgi network. Transport by this route may be necessary for translocation of the toxin to the cytosol and for intoxication, but it is not known whether the enzymatically active part of the toxins actually enters the cytosol from the trans-Golgi network. It has been suggested that such toxins are transported in a retrograde manner to the endoplasmic reticulum and that translocation occurs in this organelle, but retrograde transport of endocytosed material beyond the trans-Golgi network has never been demonstrated. Here we show that in butyric acid-treated A431 cells endocytosed Shiga toxin is not only transported to the trans-Golgi network, but also to all Golgi stacks, to the endoplasmic reticulum and to the nuclear envelope. Furthermore, butyric acid sensitizes the cells to Shiga toxin, which is consistent with the possibility that retrograde transport is required for translocation of the toxin to the cytosol.  相似文献   
2.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   
3.
Hindlimb loss has evolved repeatedly in many different animals by means of molecular mechanisms that are still unknown. To determine the number and type of genetic changes underlying pelvic reduction in natural populations, we carried out genetic crosses between threespine stickleback fish with complete or missing pelvic structures. Genome-wide linkage mapping shows that pelvic reduction is controlled by one major and four minor chromosome regions. Pitx1 maps to the major chromosome region controlling most of the variation in pelvic size. Pelvic-reduced fish show the same left-right asymmetry seen in Pitx1 knockout mice, but do not show changes in Pitx1 protein sequence. Instead, pelvic-reduced sticklebacks show site-specific regulatory changes in Pitx1 expression, with reduced or absent expression in pelvic and caudal fin precursors. Regulatory mutations in major developmental control genes may provide a mechanism for generating rapid skeletal changes in natural populations, while preserving the essential roles of these genes in other processes.  相似文献   
4.
We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.  相似文献   
5.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   
6.
In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine to uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.  相似文献   
7.
Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4-7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 × 10?1? and P = 4.1 × 10??, respectively).  相似文献   
8.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2(+)-permeable cation channels which are blocked by extracellular Mg2(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2(+) block and a decrease in Ca2(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.  相似文献   
9.
The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.  相似文献   
10.
Beatty CD  Beirinckx K  Sherratt TN 《Nature》2004,431(7004):63-66
Prey species that are unprofitable to attack often share conspicuous colours and patterns with other coexisting defended species. This phenomenon, termed müllerian mimicry, has long been explained as a consequence of selection on defended prey to adopt a common way of advertising their unprofitability. However, studies using two unpalatable prey types have not always supported this theory. Here we show, using a system of humans hunting for computer-generated prey, that predators do not always generate strong selection for mimicry when there are two unprofitable prey types. By contrast, we demonstrate that when predators are faced with a range of different prey species, selection on unprofitable prey to resemble one another can be intense. Here the primary selective force is not one in which predators evaluate the profitabilities of distinct prey types independently, but one in which predators learn better to avoid unprofitable phenotypes that share traits distinguishing them from profitable prey. This need to simplify decision making readily facilitates the spread of imperfect mimetic forms from rarity, and suggests that müllerian mimicry is more likely to arise in multispecies communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号