首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
现状及发展   1篇
研究方法   2篇
综合类   1篇
  2014年   1篇
  2006年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Truncation of the tumour suppressor adenomatous polyposis coli (Apc) constitutively activates the Wnt/beta-catenin signalling pathway. Apc has a role in development: for example, embryos of mice with truncated Apc do not complete gastrulation. To understand this role more fully, we examined the effect of truncated Apc on zebrafish development. Here we show that, in contrast to mice, zebrafish do complete gastrulation. However, mutant hearts fail to loop and form excessive endocardial cushions. Conversely, overexpression of Apc or Dickkopf 1 (Dkk1), a secreted Wnt inhibitor, blocks cushion formation. In wild-type hearts, nuclear beta-catenin, the hallmark of activated canonical Wnt signalling, accumulates only in valve-forming cells, where it can activate a Tcf reporter. In mutant hearts, all cells display nuclear beta-catenin and Tcf reporter activity, while valve markers are markedly upregulated. Concomitantly, proliferation and epithelial-mesenchymal transition, normally restricted to endocardial cushions, occur throughout the endocardium. Our findings identify a novel role for Wnt/beta-catenin signalling in determining endocardial cell fate.  相似文献   
2.
The microRNA-producing enzyme Dicer1 is essential for zebrafish development   总被引:2,自引:0,他引:2  
MicroRNAs (miRNAs) are produced by the Dicer1 enzyme; the role of Dicer1 in vertebrate development is unknown. Here we report target-selected inactivation of the dicer1 gene in zebrafish. We observed an initial build-up of miRNA levels, produced by maternal Dicer1, in homozygous dicer1 mutants, but miRNA accumulation stopped after a few days. This resulted in developmental arrest around day 10. These results indicate that miRNA-producing Dicer1 is essential for vertebrate development.  相似文献   
3.
Adult neurogenesis, the birth of new neurons in the mature brain, has attracted considerable attention in the last decade. One of the earliest identified and most profound factors that affect adult neurogenesis both positively and negatively is stress. Here, we review the complex interplay between stress and adult neurogenesis. In particular, we review the role of the glucocorticoid receptor, the main mediator of the stress response in the proliferation, differentiation, migration, and functional integration of newborn neurons in the hippocampus. We review a multitude of mechanisms regulating glucocorticoid receptor activity in relationship to adult neurogenesis. We postulate a novel concept in which the level of glucocorticoid receptor expression directly regulates the excitation-inhibition balance, which is key for proper neurogenesis. We furthermore argue that an excitation-inhibition dis-balance may underlie aberrant functional integration of newborn neurons that is associated with psychiatric and paroxysmal brain disorders.  相似文献   
4.
The genetics of plant metabolism   总被引:11,自引:0,他引:11  
Variation for metabolite composition and content is often observed in plants. However, it is poorly understood to what extent this variation has a genetic basis. Here, we describe the genetic analysis of natural variation in the metabolite composition in Arabidopsis thaliana. Instead of focusing on specific metabolites, we have applied empirical untargeted metabolomics using liquid chromatography-time of flight mass spectrometry (LC-QTOF MS). This uncovered many qualitative and quantitative differences in metabolite accumulation between A. thaliana accessions. Only 13.4% of the mass peaks were detected in all 14 accessions analyzed. Quantitative trait locus (QTL) analysis of more than 2,000 mass peaks, detected in a recombinant inbred line (RIL) population derived from the two most divergent accessions, enabled the identification of QTLs for about 75% of the mass signals. More than one-third of the signals were not detected in either parent, indicating the large potential for modification of metabolic composition through classical breeding.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号