首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
现状及发展   3篇
研究方法   4篇
综合类   2篇
  2012年   3篇
  2011年   2篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
In this study, we evaluate the potential involvement of collagenase-3 (MMP13), a matrix metalloproteinase (MMP) family member, in the exudative form of age-related macular degeneration characterized by a neovascularisation into the choroid. RT-PCR analysis revealed that human neovascular membranes issued from patients with AMD expressed high levels of Mmp13. The contribution of MMP13 in choroidal neovascularization (CNV) formation was explored by using a murine model of laser-induced CNV and applying it to wild-type mice (WT) and Mmp13-deficient mice (Mmp13 ?/? mice). Angiogenic and inflammatory reactions were explored by immunohistochemistry. The implication of bone marrow (BM)-derived cells was determined by BM engraftment into irradiated mice and by injecting mesenchymal stem cells (MSC) isolated from WT BM. The deficiency of Mmp13 impaired CNV formation which was fully restored by WT BM engraftment and partially rescued by several injections of WT MSC. The present study sheds light on a novel function of MMP13 during BM-dependent choroidal vascularization and provides evidence for a role for MSC in the pathogenesis of CNV.  相似文献   
2.
Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats-like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-beta-binding protein 1. In addition, we observed a significant increase in total and active TGF-beta in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-beta signaling and may be the underlying mechanism of geleophysic dysplasia.  相似文献   
3.
The use of linear error correction models based on stationarity and cointegration analysis, typically estimated with least squares regression, is a common technique for financial time series prediction. In this paper, the same formulation is extended to a nonlinear error correction model using the idea of a kernel‐based implicit nonlinear mapping to a high‐dimensional feature space in which linear model formulations are specified. Practical expressions for the nonlinear regression are obtained in terms of the positive definite kernel function by solving a linear system. The nonlinear least squares support vector machine model is designed within the Bayesian evidence framework that allows us to find appropriate trade‐offs between model complexity and in‐sample model accuracy. From straightforward primal–dual reasoning, the Bayesian framework allows us to derive error bars on the prediction in a similar way as for linear models and to perform hyperparameter and input selection. Starting from the results of the linear modelling analysis, the Bayesian kernel‐based prediction is successfully applied to out‐of‐sample prediction of an aggregated equity price index for the European chemical sector. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
5.
We studied ten individuals from eight families showing features consistent with the immuno-osseous dysplasia spondyloenchondrodysplasia. Of particular note was the diverse spectrum of autoimmune phenotypes observed in these individuals (cases), including systemic lupus erythematosus, Sj?gren's syndrome, hemolytic anemia, thrombocytopenia, hypothyroidism, inflammatory myositis, Raynaud's disease and vitiligo. Haplotype data indicated the disease gene to be on chromosome 19p13, and linkage analysis yielded a combined multipoint log(10) odds (LOD) score of 3.6. Sequencing of ACP5, encoding tartrate-resistant acid phosphatase, identified biallelic mutations in each of the cases studied, and in vivo testing confirmed a loss of expressed protein. All eight cases assayed showed elevated serum interferon alpha activity, and gene expression profiling in whole blood defined a type I interferon signature. Our findings reveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interferon metabolism and highlight the importance of type I interferon in the genesis of autoimmunity.  相似文献   
6.
Most traits and disorders have a multifactorial background indicating that they are controlled by environmental factors as well as an unknown number of quantitative trait loci (QTLs). The identification of mutations underlying QTLs is a challenge because each locus explains only a fraction of the phenotypic variation. A paternally expressed QTL affecting muscle growth, fat deposition and size of the heart in pigs maps to the IGF2 (insulin-like growth factor 2) region. Here we show that this QTL is caused by a nucleotide substitution in intron 3 of IGF2. The mutation occurs in an evolutionarily conserved CpG island that is hypomethylated in skeletal muscle. The mutation abrogates in vitro interaction with a nuclear factor, probably a repressor, and pigs inheriting the mutation from their sire have a threefold increase in IGF2 messenger RNA expression in postnatal muscle. Our study establishes a causal relationship between a single-base-pair substitution in a non-coding region and a QTL effect. The result supports the long-held view that regulatory mutations are important for controlling phenotypic variation.  相似文献   
7.
Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.  相似文献   
8.
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号