首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
教育与普及   9篇
综合类   2篇
  2019年   5篇
  2018年   6篇
排序方式: 共有11条查询结果,搜索用时 171 毫秒
1.
正人类系统而深入地认识超新星的历史将近百年,目前已经大致理解了超新星的爆发与发光机制。但在最近20年间,天文学家发现了一类极端明亮的超新星,其亮度可达普通超新星的几十倍到几百倍,这些超亮超新星究竟为什么能这么亮?  相似文献   
2.
<正>对中微子的观测,形成了全球天文界一次声势浩大的"接力探测"中微子十分神秘,不可捉摸。所以科学家花费了许多心血制造了多种重要的中微子探测器,来捕捉各种各样的中微子。目前己取得累累硕果。神冈探测器:发现超新星中微子神冈探测器(Kamiokande)的全称是"神冈核衰变实验",位于日本神冈町的茂住矿山地下914米的深处。神冈探测器由东京大学宇宙线研究所负责,于1982年开始建设,1983年4月建成。整个探测器是一个高为16米、宽约15. 6米的大水箱,  相似文献   
3.
<正>这是广义相对论最后的一块拼图,这是时空本身的震荡,这是天体物理学的新时代,这是人类迈向宇宙的新起点。从1916年爱因斯坦首次推导出引力波的波动方程至2014年的近百年中,引力波一直无法被直接探测到,也因此几乎从未得到大众的关注。但近两年来,引力波却突然成为极其热门的词汇,至少3个与其相关的重大事件引发了全世界的关注。第一次是  相似文献   
4.
<正>中微子,这个曾在2011年的"超光速"乌龙事件中一度街知巷闻的粒子物理学名词,在国际物理学的舞台上几度掀起了波澜。先是2013年11月,位于南极的"冰立方"中微子天文台首次确定探测到了来自太阳系外的深空中微子;而后是2014年的2月11日,一组英国科学家对中微子的质量提出了新的见解,认为中微子比先前认知的要重得多;最近  相似文献   
5.
<正>100年前,爱因斯坦的广义相对论预言了引力波的存在。但爱因斯坦也曾认为,由于引力波太过微弱,它无法被探测到。如今我们终于探测到了引力波,在证明了爱因斯坦的预言正确的同时,也证明了他的认识的局限性。13亿年前,在距离地球非常非常遥远的地方发生了一件大事,也可以算是宇宙中的一个大灾难。不过,它与地球上发生的任何灾难都不同:它静悄悄地发生,也不发出耀眼光芒,即使你就在它附近,也不会看见光亮。  相似文献   
6.
2017年8月17日,激光干涉引力波天文台(LIGO)首次探测到来自双中子星合并的引力波GW170817.伴随GW170817的短伽玛射线暴与千新星也分别在1.74 s后和10.9 h后被伽玛射线卫星和光学望远镜探测到.对这些电磁对应体的观测与研究首次证实双中子星并合会产生大量重元素并形成千新星.通过相关理论与观测的比较,人们对于双中子星并合的中心引擎、短伽玛暴喷流的特性以及并合产生的抛射物性质等一系列重要的天体物理学问题进行了空前深入的研究.本文介绍伴随GW170817的各类电磁波对应体的性质,并探讨这些电磁波对应体的物理起源.  相似文献   
7.
<正>英国著名理论物理学家斯蒂芬·霍金曾表示:"引力波提供了一种人们看待宇宙的全新方式。(人类)探测到引力波的这种能力,很有可能引发天文学革命。"由此可见,引力波探测对于天文学家和物理学家而言,有着至关重要的意义。首先,对引力波的研究可以加深物理学家对广义相对论的理解。广义相对论在对一些强引力天体系统的精确描述中,起到关键性的作用。在这些强引力系统中,牛顿力学不再适用,我们只能使用广义相对论来研究它们。通过对  相似文献   
8.
<正>在过去几十年内,天文学家已经观测到了几千个耀变体。"耀变体发射高能宇宙线和高能中微子"的图景很漂亮,却一直未得到有力的证实。但这个局面在2018年9月发生了改变:"冰立方"探测到一个遥远的超高能的中微子,而伽玛射线卫星探测到同一方向来的伽玛射线辐射。这两个探测结果表明,"耀变体发射高能宇宙线和高能中微子"的图景很可能是正确的,因此这个结果也被视为多信使天文学的一大突破。  相似文献   
9.
<正>天体剧烈活动引起的时空扰动,好比在浩渺的宇宙中投下一颗石子,历经10多亿年漫漫星系之旅,时空的涟漪最终与地球邂逅。从1916年爱因斯坦的预言,到2015年9月首次确定探测到引力波信号,人类为了直接探测时空的涟漪,苦苦探寻百年。这其中,我国学者对引力波及其相关领域的贡献是多方面的。  相似文献   
10.
<正>人类科学史上一大批杰出科学家,如米歇尔、拉普拉斯、霍金都曾痴迷于同一类神秘天体——黑洞,而他们无法亲眼看到的黑洞,如今已卸下神秘面纱,与全人类坦诚相见了!黑洞不仅是天文学和物理学中最重要的名词之一,也是整个科学领域中最具神秘色彩的概念之一。当一个天体足够致密时,距离其中心某个范围以内的光无法逃脱出去,这个物体就成为黑洞。光恰好无法逃脱的地方,构成一个面,即"事件视界"。事件视界外面的观测者无法看到事件视界以内,事件视界的大小也就因此代表着黑洞的大小。尽管牛顿理论也可以预言黑洞的存在,但只  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号