首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
教育与普及   1篇
综合类   9篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2011年   1篇
  2009年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
通过表面机械研磨处理在纯铁表层(约10μm厚)可制备出无污染的约的纳米晶组织,平均晶粒尺寸可达10~25nm.利用金属蒸汽弧离子注入机对表面纳米化处理前后的试样进行了钛离子注入.结果表明,注入Ti元素浓度在经过表面纳米化处理的样品要比在未经处理的样品中有很大的提高.主要原因可能是在经过表面纳米化处理过的试样表面层有更多的缺陷(包括过饱和的空位、位错和非平衡晶界)以及由于压应力场的存在,注入原子与这些缺陷的交互作用增加了Ti在Fe中的固溶度.对注入深度变化不大的原因也做了分析.  相似文献   
2.
总结了几年来从事《冶金传输原理》课程教学工作的经验和体会,提出了对本课程教学方法进行改进的几点意见:包括突出重点内容,采用对比讲授,开展课堂讨论,注重培养学生独立分析问题和解决问题的能力,加强实验等。  相似文献   
3.
为了提高TiO_2半导体的光催化性能,以钛酸四丁酯为钛源,氧化石墨烯(GO)粉末为添加剂,制备了不同GO浓度的前驱体溶液,然后采用静电纺丝法制备了TiO_2/x-GO纳米复合纤维。利用XRD,SEM表征分析了纳米复合纤维的物相结构、成分、结晶性和微观形貌。将纳米复合纤维加入亚甲基蓝溶液中,以可见光照射条件下亚甲基蓝的光催化降解率来表征纳米复合纤维的光催化性能。结果表明:添加GO粉末可降低TiO_2的团聚,提高其在纤维中的分散性,增大TiO_2/x-GO纳米复合纤维的比表面积;GO与TiO_2形成的异质结有利于提高TiO_2纳米复合纤维的结晶性和光催化性能。TiO_2/2-GO的光催化效果达到最佳,降解60 min时可达到99%的降解率。此外,使用静电纺丝制备的TiO_2/x-GO纳米复合纤维可避免TiO_2在使用过程的损耗而造成的浪费,更好地满足工业废水处理的需求。  相似文献   
4.
5.
6.
采用磁粉晶化制备纳米晶磁材的方法,研究了热处理工艺对纳米晶复合磁体磁性能的影响。结果表明,热处理温度和时间明显地影响纳米晶的形成及其磁性能,热处理温度为700℃时,纳米复合磁体可以获得较好的磁性能。该研究方法工艺简单,成本较低,具有一定的实用价值。  相似文献   
7.
研究不同加热场对物料显微结构的影响,为微波加热场的特殊效应提供佐证。以内配碳酸钙高碳铬铁粉为研究对象,采用微波加热和常规加热进行固相脱碳,并对高碳铬铁粉显微结构进行对比研究。实验结果表明:微波加热内配碳酸钙高碳铬铁粉到900℃时,(Cr,Fe)7C3开始分解,在晶粒边缘形成少量的(Cr,Fe)23C6-(Cr Fe);而常规加热内配碳酸钙高碳铬铁粉到900℃时,其金相组织结构没有发生明显的变化;当脱碳温度提高到1 000℃和1 100℃时,微波场高碳铬铁粉中的(Cr,Fe)7C3逐渐消失,(Cr,Fe)23C6-(Cr Fe)大量出现,且分布均匀;而常规加热下(Cr,Fe)23C6-(Cr Fe)含量较少且偏析严重,当脱碳温度达到1 200℃时,微波场中(Cr,Fe)7C3几乎完全分解转变为(Cr,Fe)23C6-(Cr Fe),而常规加热下仍有较多(Cr,Fe)7C3残留,分布极不均匀,氧化程度也明显高于微波加热。微波加热下固相脱碳反应要求的温度低,反应速度快,反应较均匀,氧化程度低,体现出微波加热的优越性,证明微波场对高碳铬铁粉中碳的扩散能力具有明显的增强作用。  相似文献   
8.
纯铁表面采用高能喷丸机械研磨处理,并在样品罐中添加镍粉,经过100 min的处理,镍粉均匀镶嵌在纯铁基体,并形成约100 μm铁镍合金层,经600℃热处理后,合金化程度进一步增强.界面微观研究表明,表面机械研磨时存在显著的原子扩散,可以在金属表面获得一定厚度的合金层,适当的热处理会进一步增强合金化程度,是一种新的金属表面合金化方法.  相似文献   
9.
根据多年从事教学改革经验,指出课堂教学改革是教育改革的重要环节,而计算机辅助教学(CAI)是改革课堂教学形式、实现现代化教学的有效途径。  相似文献   
10.
以空气作为流化气体,在微波加热喷动流化床中对高碳铬铁粉进行固相脱碳,研究不同温度和保温时间条件下对物料显微结构的变化。试验表明,加热温度800℃、保温1h,高碳铬铁中粗大的(Cr,Fe)7C3开始分解,并产生少量(Cr,Fe)23C6-(CrFe),呈不规则星点状分布在(Cr,Fe)7C3晶粒内部;随着加热温度的提高和保温时间的延长,星点状的(Cr,Fe)23C6-(CrFe)逐渐变大,形成类蜂窝状结构;加热温度1 000℃、保温3h,粗大的(Cr,Fe)7C3晶体分解形成网络状结构。在微波加热喷动流态化条件下,高碳铬铁粉固相脱碳效果明显,反应均匀,能够有效抑制粘接失流现象。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号