首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
丛书文集   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
针对单训练样本情况下的人脸识别问题,提出一种虚拟样本扩展方法. 利用光照模板映射将单一样本扩展为一组虚拟样本,从而增强单训练样本的分类信息. 采用主成分分析(principal component analysis, PCA)对扩展的虚拟样本进行降维,并用Fisher 鉴别变换作二次特征抽取,然后用最近邻分类器识别人脸图像. 所提方法在人脸图像库Yale B 和Extended Yale B 上进行试验,用PCA+LDA 方法把扩展图像作为训练集对测试图像进行特征提取和识别. 相对于以单样本图像为训练集的PCA 特征提取,该方法显著提高了识别率.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号