首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   53篇
  国内免费   37篇
系统科学   47篇
丛书文集   8篇
教育与普及   4篇
现状及发展   3篇
综合类   280篇
  2024年   3篇
  2023年   26篇
  2022年   36篇
  2021年   48篇
  2020年   30篇
  2019年   15篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   9篇
  2013年   10篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   20篇
  2006年   19篇
  2005年   9篇
  2004年   13篇
  2003年   10篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1995年   2篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
1.
针对车道变换意图识别中数据源单一,传统序列模型难以捕获长序列范围内换道意图且存在长期依赖问题,提出一种结合时间信息加权指数损失函数的长短时记忆(long short-term memory,LSTM)车辆换道意图识别模型.首先,利用驾驶模拟舱、眼动仪进行高速公路驾驶实验,采集车辆运行数据和驾驶员眼动数据;然后,基于LSTM结构单元构建高速公路环境下车辆换道意图识别模型,提出基于时间信息加权的指数损失函数对模型权重进行优化;最后,利用车辆运行数据和驾驶员眼动数据对所提模型加以验证并与其他模型进行对比,所提模型换道识别的准确率为91.33%,宏平均精确率为89.04%,宏平均召回率为92.84%,宏平均F1值为90.33%.结果表明,长短时记忆网络对于长序列换道意图识别过程具有较好的分辨能力,提出的损失函数对模型权重优化具有良好的效果.  相似文献   
2.
方面级情感分析 (aspect-based sentiment analysis, ABSA) 旨在预测给定文本中特定目标的情感极性. 研究表明, 利用注意力机制对目标及其上下文进行建模, 可以获得更有效的情感分类特征表达. 然而, 目前常用的方法是通过对特定目标使用平均向量来计算该目标上下文的注意权值, 这类方法无法突出文本中个别单词对于整个句子的重要性. 因此, 提出了一种基于内联关系的方面级情感分析方法, 该方法可以对目标和上下文进行建模, 将关注点放在目标的关键词上, 以学习更有效的上下文表示. 首先使用门控循环单元 (gated recurrent unit, GRU) 对方面信息和句中单词进行融合分布式表达; 然后将分布式表达输入到结合注意力机制的长短时记忆网络 (long short-term memory network, LSTM), 通过查询机制来增加内联关系的权重, 最终得到方面级情感分类. 该模型在公开数据集上进行的实验结果表明, 该方法是有效的, 精确度均超过基线模型.  相似文献   
3.
针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题, 提出一种基于类不平衡学习的情感分析方法. 该方法利用深度学习训练过程中的概率输出, 以计算样例的信息熵作为影响因子构建交叉信息熵损失函数. 在IMDB公开数据集上进行实验验证的结果表明, 基于集成信息熵损失函数的双向长短期记忆网络能处理类不平衡问题; 对数据的统计分析结果表明, 该策略能提升基于双向长短期记忆网络的评论情感极性分类性能. 针对AUC(area under curve)指标, 使用集成信息熵损失函数的双向长短期记忆网络模型比未考虑类不平衡的深度学习模型在中位数上最多提升15.3%.  相似文献   
4.
大型活动散场期间的地铁车站客流属于可预知的非常规客流,采用常规客流的统计预测方法难以准确预测其客流需求.基于深度学习,将历史客流规律、大型活动数据与实时自动售检票系统数据相结合,提出了一种适用于大型活动散场期间地铁车站的短时客流预测模型.首先对历史客流数据进行了拆分及降噪处理,并分析了活动客流特征.之后,基于深度学习框架构建多层结构的卷积神经网络,拟合活动客流特征与客流时空分布的映射关系,并选取Adam(adaptive moment estimation)算法优化训练过程,以适用于活动散场时客流集中进站的情况.最后,以北京地铁奥林匹克公园站为例,利用实测数据验证了模型的准确性.预测结果表明:建立的Adam-CNN(convolution neural network)模型相对于常用时间序列方法自回归滑动平均和传统神经网络SGD-CNN模型具有更高的精度,能够为大型活动的组织提供更为有力的支持.  相似文献   
5.
传统辐射源信号识别方法往往需要人工提取特征,不仅对专业知识要求较高,而且人为选择的特征不能够保证适用于大多数类型信号的识别,识别精度和识别速度也不能兼顾。针对上述问题,将语音处理领域常用的深度学习模型——卷积长短时深度神经网络(convolutional long short-term deep neural network, CLDNN)引入到辐射源信号的识别中,并将该模型中的长短时记忆层改为双向门控循环单元层。模型的输入为原始时间序列数据,特征提取和分类识别过程均在网络中进行,避免了人工选择特征的不完备性。实验结果表明,所提模型在低信噪比情况下也能够有效识别信号类型,同时与其他模型相比,实现了识别精度和识别速度之间的平衡。  相似文献   
6.
为进一步提高短期电力负荷预测精度,构建一种基于注意力机制的经验模态分解(EMD)和门控循环单元(GRU)混合模型,对时间序列的短期负荷进行预测.首先,对负荷序列进行EMD,将数据重构成多个分量;再通过GRU提取各分量中时序数据的潜藏特征;经注意力机制突出关键特征后,分别对各分量进行预测;最后,将各分量的预测结果叠加,得到最终预测值.仿真结果表明:相对于BP网络模型、支持向量机(SVR)模型、GRU网络模型和EMD-GRU模型,基于EMD-GRU-Attention的混合预测模型能取得更高的预测精度,有效地提高短期电力负荷预测精度.  相似文献   
7.
产量预测是油田生产动态开发研究的重要内容之一。油田的长期生产积累了大量数据,但是波动幅度很大,直接应用长短期记忆神经网络预测油田的生产指标,会出现神经网络泛化性很差的问题。因此,首先利用双层长短期记忆神经网络(long-short term memory,LSTM)和随机式失活对神经网络架构进行调整,建立了深度学习神经网络模型;并提出了一种新的果蝇聚集方法,通过改进的果蝇优化算法对所建立的神经网络模型进行优化,避免其陷入局部最优解,搜寻解空间的最优解;最后,油田实例验证表明,优化后的深度学习网络的网络泛化能力和预测精度有了较大提高,对于油田波动性较大的数据也能较好地拟合。所建立油田产量预测模型可应用于矿场开发实际。  相似文献   
8.
利用计算机技术在海量质谱数据中鉴定蛋白质序列是蛋白质组学研究最基本且重要的任务之一,诱饵序列库构建的好坏是蛋白质鉴定质量控制成功的关键之一。发展了基于注意力机制-双向长短期记忆神经网络(Attention Bi-LSTM)的诱饵序列构建方法,整体研究基于编码-解码框架,采用双向长短期记忆神经网络在解决传统循环神经网络梯度消失问题的同时,可以捕获前向后向更多依赖信息对处理序列数据更加有优势;引入注意力机制提高模型对目标序列库和诱饵序列库相关程度的关注度;并与目前常用的随机和反转算法进行比较。结果显示,基于Attention Bi-LSTM模型构建的诱饵序列库能满足理想诱饵序列库的各项特征要求;在不同大小实验数据集以及谱图、肽段、蛋白3个层面对比分析,显示构建的诱饵序列库与其他方法比具有更好的灵敏性。因此,Attention Bi-LSTM是一种很有潜力的诱饵序列库构建方法。  相似文献   
9.
摘要: 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso NN组合模型.结果表明:Lasso NN模型在路网交叉口对未来15 min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果.  相似文献   
10.
提出了基于相似案例分析的原材料长期与短期采购比例确定方法.首先,将当前需要解决的原材料长期与短期采购比例问题视为目标案例,将收集到的一些历史的原材料采购问题以及采用的原材料长短期采购比例方案作为历史案例;其次,通过计算目标案例与历史案例间的相似度来提取相似历史案例;然后,计算各相似历史案例的采购比例方案实施效果的效用值,并通过设置阈值来筛选采购比例方案实施效果较好的相似历史案例;进而,依据筛选的相似历史案例,计算目标案例中原材料长期与短期采购的比例.最后,通过一个实例分析说明了提出方法的可行性与有效性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号