排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用实验室制备的纳米CuO为催化剂,对水中痕量的对硝基氯苯(pCNB)进行催化臭氧氧化去除效能研究。考察了不同工艺条件、催化剂用量、溶液pH值、臭氧进气浓度以及叔丁醇等因素对有机物去除效能的影响。结果表明:在实验条件下,纳米CuO对臭氧氧化去除水中的pCNB具有明显的催化效果,12min内,催化臭氧氧化对pCNB的去除率比单独臭氧氧化提高了28%。随着催化剂用量、pH值(3~11)和臭氧进气浓度的增加,pCNB去除率均增大。自由基抑制剂叔丁醇的加入使pCNB去除率明显降低,证明在纳米CuO催化臭氧化过程中pCNB的降解主要是由于羟基自由基的氧化作用。 相似文献
2.
负载Pt催化剂在卤代硝基苯氢化反应中的催化性能研究 总被引:9,自引:0,他引:9
考察了常压、303K反应条件下,γ—Al2O3、TiO2和ZrO2上负载的铂催化剂在卤代硝基苯的氢化反应中的催化性能,同时考察了过渡金属(Cr,Mn,Fe,Co,Ni和Cu)改性Pt/ZrO2的催化性能.不同负载的铂催化剂加氢活性次序为:Pt/TiO2>Pt/γ—Al2O3>Pt/ZrO2,相应的对氯苯胺(p—CAN)选择性次序为:Pt/TiO2>Pt/ZrO2>Pt/γ—Al2O3.KBH4处理过的催化剂显示了较高的催化活性.Mn、Fe和Co的引入同时提高了Pt/ZrO2催化剂的催化活性和p—CAN选择性.PtNi/ZrO2催化剂随着Ni含量的增加,催化活性降低,但产物p—CAN的选择性都超过99%. 相似文献
3.
采用异丙醇浸渍法制备了负载型Ru-Ir/γ-A l2O3双金属催化剂用于催化对氯硝基苯的选择加氢。系统考察了温度、压力、时间、溶剂的极性及底物浓度对于催化加氢反应的影响。实验结果表明,在Ru-Ir/γ-A l2O3双金属催化体系中,催化剂的活性和目标产物的选择性较好。在P(H2)=1.0 MPa,70℃,反应150 m in的条件下,双金属催化剂Ru-Ir/γ-A l2O3催化对氯硝基苯中硝基选择性加氢反应转化率达到100%,生成对氯苯胺选择性达95%。 相似文献
4.
针对采用传统厌氧生物技术处理含硝基芳香族化合物(NACs)废水时存在降解速率低、系统稳定性差和运行成本高等问题,以α-Fe_2O_3为电子传递介体与厌氧生物系统进行耦合,探究其降解以对硝基氯苯(4-CNB)为代表的NACs的效果,并阐述耦合作用机制。初始质量浓度为45 mg/L 的4-CNB在耦合系统内反应56 h后,其残留质量浓度为(3.24±0.13) mg/L,而在厌氧生物对照系统和α-Fe_2O_3对照系统中分别为(15.47±0.43)mg/L和(44.48±0.01)mg/L,表明α-Fe_2O_3的投加对厌氧生物降解4-CNB具有显著的强化作用。4-CNB在耦合系统内的降解效率与α-Fe_2O_3的投加量在1~3 g/L范围内呈现显著的正相关,当α-Fe_2O_3的投加量为5 g/L时,其对厌氧微生物产生较强的抑制作用。相比于厌氧对照系统,4-CNB在耦合系统内的降解更符合一级动力学,进一步验证了α-Fe_2O_3与厌氧微生物之间在降解4-CNB过程中具有一定的协同效应。此外,α-Fe_2O_3的投加可显著降低厌氧生物系统内的氧化还原电位(ORP)和增强pH自缓冲能力,这些均有利于4-CNB的还原降解。电子传递体系 (ETS) 活性在耦合系统和厌氧生物对照系统中分别为48.77 μg/(g·min)和32.19 μg/(g·min),进一步表明了α-Fe_2O_3可作为厌氧还原4-CNB过程的电子传递介质。综上所述,采用α-Fe_2O_3作为电子传递介质可以强化厌氧微生物的还原活性,可为实现含NACs废水的大规模处理提供新的技术储备。 相似文献
5.
6.
钯/载体催化剂上对氯硝基苯加氢反应的研究 总被引:2,自引:0,他引:2
研究了以 Pd/载体为催化剂时,Pd的浓度,载体的种类,以及 Pd与 SnO结合后对于对氯硝基苯选择性氢化反应的影响。 相似文献
7.
相转移催化技术是近20年来发展起来的一种有机合成新方法。国内有文献报道,应用相转移催化法制备对硝基苯乙醚,具有反应时间短,流程简单,反应条件温和,能耗低等优点。本文就催化剂种类、反应时间及催化剂用量对转化率的影响进行了探讨,发现苄基三乙基氯化铵是较好的相转移催化剂。 相似文献
1