首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1755篇
  免费   78篇
  国内免费   88篇
系统科学   5篇
丛书文集   61篇
教育与普及   6篇
理论与方法论   3篇
现状及发展   16篇
综合类   1830篇
  2024年   2篇
  2023年   13篇
  2022年   33篇
  2021年   39篇
  2020年   37篇
  2019年   28篇
  2018年   20篇
  2017年   32篇
  2016年   43篇
  2015年   46篇
  2014年   59篇
  2013年   51篇
  2012年   69篇
  2011年   82篇
  2010年   44篇
  2009年   67篇
  2008年   56篇
  2007年   111篇
  2006年   107篇
  2005年   103篇
  2004年   78篇
  2003年   94篇
  2002年   83篇
  2001年   77篇
  2000年   58篇
  1999年   56篇
  1998年   51篇
  1997年   31篇
  1996年   53篇
  1995年   40篇
  1994年   43篇
  1993年   36篇
  1992年   32篇
  1991年   23篇
  1990年   28篇
  1989年   32篇
  1988年   23篇
  1987年   23篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
排序方式: 共有1921条查询结果,搜索用时 31 毫秒
1.
以1-(2,6-二甲基苯基)-1H-咪唑与2-溴乙基葡萄糖苷为原料,一步合成了新化合物溴化1-(2,6-二甲基苯基)-3-[2-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖基氧基)-乙基]-咪唑盐(化合物1),是一种咪唑啉盐表面活性剂。化合物1的结构中存在糖基,含有多个手性碳原子,导致其核磁共振氢谱和碳谱较为复杂。我们运用液相色谱-高分辨质谱(LC-HRMS)和元素分析(EA)确定了其化学组成,随后通过液体核磁共振波谱技术(包括1D和2D核磁共振手段,如~1H NMR、~(13)C NMR、DEPT90、DEPT135、~1H-~1H COSY、~1H-~(13)C HSQC、~1H-~(13)C HMBC)对化合物1的氢谱和碳谱信号进行了表征,通过解析对其结构进行了详尽归属。  相似文献   
2.
植物硝酸盐转运蛋白(NRT)不仅参与硝态氮的吸收及运转,还通过介导激素转运、信号传递,或直接作为其他离子转运子参与植物根系生长发育及其他矿质离子的吸收运转等过程,并影响植物在这些离子胁迫下的耐受表现。部分NRT可能在植物养分综合利用及抗性培育中同时具有重要作用。该文从根系发育及非生物胁迫两方面综述了NRT的最新研究进展,总结了其可能的作用机制。  相似文献   
3.
高浓度次氯酸钠(NaClO)溶液在储存及使用过程中易产生有效氯浓度降低、氯气中毒等问题,因此在环境卫生消毒过程中为保证消毒水的稳定与使用安全,应尽量降低NaClO浓度。以低浓度食盐水为原料,利用无隔膜电解法制备了低浓度NaClO消毒水,采用单因素实验法研究了盐水流量、盐的质量浓度、电流密度与进水温度4个工艺参数对电解效果的影响,并以有效氯浓度、电流效率和运行费用为评价指标对电解参数进行了优化。结果表明,当盐水流量为75 mL/min、盐的质量浓度为7 g/L、电流密度为1 A/dm2、进水温度为30 ℃时,有效氯浓度和电流效率较高,运行费用最低。对电解制备消毒水反应进行了表观动力学探究,确定了该反应为一级反应,并归纳出盐的初始质量浓度a和电流密度J与反应速率常数k的关系分别为:k=0.007a-0.459k=0.003J0.423。  相似文献   
4.
利用扫描电镜(SEM)和能谱仪(EDS)等手段,并结合热力学理论计算,研究了浸泡在1173 K温度下脱水不完全的CaCl2熔盐中的固态SiO2圆柱样显微特征变化及其原因,初步分析了CaCl2盐的水解反应对固态SiO2电解特性的影响.结果表明,未严格脱水操作的CaCl2盐很容易高温水解,生成的CaO在熔体中的活度只要不低于0.001,即可与SiO2逐级形成CaO·SiO2(CS)、3CaO·2SiO2(C3 S2)和2CaO·SiO2(C2 S)等多种硅酸盐,导致圆柱体外表面的形貌、结构发生较大变化;圆柱体内部渗透进入的熔盐中CaO含量低,形貌变化较小.外表面硅酸盐层的存在使仅内置阴极集流体的固态Si O 2圆柱体电解还原速度减慢和难度增加.  相似文献   
5.
张苛  罗要飞 《科学技术与工程》2020,20(36):15081-15087
为更好地认识盐蚀环境下沥青路面的性能损伤机理,在实验室内模拟除冰盐、融雪剂形成的盐蚀环境对沥青结合料的侵蚀作用。采用沥青四组分试验和原子力显微镜(AFM)试验评价沥青的化学组分及表面微纳观形貌特性。开展针入度、软化点、延度和粘度试验,探讨盐蚀环境下沥青结合料的性能演化情况。结果表明:在氯盐溶液中干湿循环和冻融循环处理后,沥青中的饱和分和芳香分含量减少,沥青质和胶质含量增加。沥青结合料表面粗糙度和蜂形结构面积百分比出现不同程度的下降。在盐蚀环境下,沥青结合料的针入度和延度均有不同程度的下降,软化点和粘度出现不同程度的升高。沥青结合料性能劣化的主要原因是在盐蚀环境中沥青的化学组分发生改变,出现一定程度的“盐老化现象”。  相似文献   
6.
姜祖明 《科学技术与工程》2020,20(20):8152-8156
针对胜利油田高温高盐的油藏环境,设计合成了一种具有梳型结构的疏水缔合聚合物,系统考察了该聚合物溶液的增黏性、耐温抗盐性、长期稳定性、注入性和驱油效果。实验结果表明,随着浓度的增加,溶液黏度呈指数增长,增黏性强。在高温高盐条件下,该疏水缔合聚合物溶液黏度均比常规聚丙烯酰胺溶液高,表现出优异的耐温抗盐性能。在90℃条件下,随老化时间增加,溶液黏度先增加后降低,60 d后溶液黏度值大于40 mPa·s,表现出优异的长期稳定性。随注入量增加,压力先增加后趋于平衡,达到0.5 MPa,表明其注入性良好。当注入浓度一定时,随着注入倍数的增加,提高原油采收率幅度先增大后趋于稳定;当注入倍数一定时,随疏水缔合聚合物浓度的增加,提高采收率幅度增大。  相似文献   
7.
随着经济的持续高速增长,各行业用电需求增大。在加快特高压骨干电网建设的同时,提高现有电网的输电能力、输电质量成为重中之重。金具是海上换流站的重要组成部分,海洋环境的特殊性,对金具提出了更高的耐腐蚀性能要求。为了探究海洋环境对金具的腐蚀性,选用ZL101A和ZL102两种典型的铝合金金具,采用5种辅助防腐蚀工艺获得5种耐腐蚀样本,并模拟海上工况对其分别进行盐雾腐蚀试验,得出最优防腐蚀工艺。研究表明:ZL101A和ZL102两种铝合金具有一定的耐腐蚀性能,ZL101A铝合金的耐腐蚀性能强于ZL102铝合金的;抛丸处理的防腐措施在ZL101A铝合金样本中的防腐蚀表现要强于ZL102铝合金样本的;阳极氧化在两种材质中防腐蚀表现均为优异,是最优异的防腐蚀工艺。  相似文献   
8.
为了探究高含量中溶盐粗颗粒盐渍土的渗透特性,依托伊朗德黑兰至伊斯法罕高速铁路项目,通过沿线盐渍土地基的现场浸水载荷试验与原位渗透试验,结合室内重塑盐渍土试验结果,对高含量中溶盐粗颗粒盐渍土的渗透特性进行研究分析。试验结果表明:中溶盐的含量对盐渍土渗透特性起着显著的影响,高含量中溶盐粗颗粒盐渍土的渗透溶滤变形主要由渗流场作用下石膏结晶颗粒遇水软化崩塌造成,与级配相似且中溶盐含量较低的盐渍土相比渗透系数均有大幅度降低;中溶盐含量越高,在荷载作用下渗透系数减小越明显;盐渍土粗颗粒所起的骨架作用越强烈,浸水过程中中溶盐含量对地基土的渗透特性的影响作用越不明显;对于不同颗粒粒径的盐渍土,在1%、3%、5%等不同中溶盐含量的范围内随着其含量的变化,渗透系数变化规律也不同;中溶盐含量超过一定范围时,呈现出中溶盐对盐渍土渗透性具有抑制作用的特征;中溶盐含量越低,易溶盐含量对其渗透性影响越显著。可见盐渍土颗粒粒径、中溶盐含量以及易溶盐含量对其渗透特性影响显著。  相似文献   
9.
基于基础性能试验、动态剪切流变(DSR)试验、热重分析(TGA)试验和红外光谱(FTIR)试验,对疏水性纳米白炭黑改性沥青在氯盐冻融环境下的劣化进程进行了系统研究。试验结果表明,疏水性纳米白炭黑的掺入可以有效抑制沥青在氯盐冻融环境下的劣化进程。基础性能试验和DSR试验表明经过30次氯盐冻融循环后,疏水性纳米白炭黑改性沥青的针入度增加了17.46%,软化点提高了5.82%,黏度增加了7.76%,车辙因子提升了17%~54%,其增长幅度远小于基质沥青,说明疏水性纳米白炭黑的掺入可以有效降低沥青对氯盐冻融环境的敏感度。TGA试验数据表明了疏水性纳米白炭黑可以提高沥青的热稳定性,但是疏水性纳米白炭黑改性沥青的热稳定性受氯盐冻融环境影响较为明显,这是由于疏水性纳米白炭黑在改性沥青过程中键合作用形成的连接键在氯盐冻融环境下更容易被破坏。通过FTIR试验可以发现在氯盐冻融环境下沥青发生了化学反应,但无新官能团出现。其中游离烃基(3 676 cm~(-1))变化最为明显,可以更为有效地描述2种沥青在氯盐冻融环境下的劣化进程。在氯盐冻融环境下,疏水性纳米白炭黑改性沥青各官能团无明显变化,分布较为稳定,具有较高的性能稳定性。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号