首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9133篇
  免费   423篇
  国内免费   442篇
系统科学   141篇
丛书文集   253篇
教育与普及   89篇
理论与方法论   9篇
现状及发展   73篇
研究方法   1篇
综合类   9429篇
自然研究   3篇
  2024年   10篇
  2023年   70篇
  2022年   119篇
  2021年   137篇
  2020年   112篇
  2019年   113篇
  2018年   122篇
  2017年   154篇
  2016年   180篇
  2015年   238篇
  2014年   318篇
  2013年   255篇
  2012年   464篇
  2011年   488篇
  2010年   313篇
  2009年   469篇
  2008年   405篇
  2007年   620篇
  2006年   530篇
  2005年   508篇
  2004年   426篇
  2003年   434篇
  2002年   397篇
  2001年   362篇
  2000年   349篇
  1999年   360篇
  1998年   271篇
  1997年   236篇
  1996年   237篇
  1995年   210篇
  1994年   168篇
  1993年   168篇
  1992年   139篇
  1991年   146篇
  1990年   142篇
  1989年   127篇
  1988年   90篇
  1987年   58篇
  1986年   26篇
  1985年   15篇
  1984年   7篇
  1981年   1篇
  1955年   4篇
排序方式: 共有9998条查询结果,搜索用时 15 毫秒
1.
针对从含噪原始信号中提取位置以及速度信息,经典跟踪微分器存在不能很好兼顾相位滞后和噪声放大问题、参数多,调试复杂等不足.在跟踪微分器等效线性分析基础上,提出复合形式跟踪微分器,用于电容式位移传感器位置信号跟踪以及速度信号估计,通过MATLAB\SIMULINK仿真以及实验平台测试,结果表明:在跟踪频率1 Hz、幅值1含噪声正弦信号中,复合跟踪微分器能光滑逼近原始位置信号,且能有效进行速度估计,相较于经典跟踪微分器,复合跟踪微分器跟踪相位滞后小0.03 rad,能更好兼顾跟踪信号相位滞后及速度信号噪声放大.  相似文献   
2.
李文显  田晖 《自然杂志》2021,44(1):19-30
20世纪初太阳黑子中磁场的发现将对太阳的研究从唯象观测带入真正的物理研究。太阳磁场将太阳内部以及各层大气联系在一起,其演化驱动了太阳大气中的各种活动现象。太阳磁场的精确测量对于我们理解太阳物理学中大多数尚未解决的问题至关重要。文章主要回顾了太阳磁场的发现和观测历史,介绍太阳磁场常用的测量方法和当前面临的挑战。  相似文献   
3.
研究北祁连造山带玉石沟橄榄岩中富甲烷流体包裹体。激光拉曼光谱原位分析结果显示, 这些流体包裹体主要由液态或气态 CH4+C(石墨)组成, 次要成分为N2, H2O, C2H6和C3H8, 代表还原性的C-H流体形式。根据石墨的拉曼特征谱峰, 利用石墨化碳质拉曼光谱(RSCM)温度计计算石墨形成温度, 结果指示石墨在流体中沉淀的最低温度介于430~590°C之间, 表明CH4+C是非生物成因的, 并形成于地幔环境。  相似文献   
4.
采用基于高精度电流守恒格式的直接数值模拟方法,对轴向磁场作用下导电流体的湍流Taylor-Couette流动进行计算.在等电势边界条件的同心圆筒中,磁场与感生电流引起的反向周向速度分布、以及其对平均流动的影响被揭示出来.采用两种不同的湍流流场平均方法,将湍流中的全部脉动划分为平均流动(Taylor涡)的贡献和湍流的贡献.通过计算不同磁场强度下的湍动能的分布,对比分析轴向磁场对平均Taylor涡流和湍流两种贡献方式的影响.  相似文献   
5.
为探索海上油田电泵举升结蜡井热循环洗井工艺井筒温度场分布规律,综合考虑潜油电机增温、电缆散热、热流体注入量、注入深度、注入温度、结蜡管段传热和海水空气导热的影响,基于热能守恒原理,建立了电泵井结蜡热循环洗井工艺井筒温度场计算模型,分析了热流体注入温度和注入量对混合产出流体的井筒温度分布的影响。研究结果表明,随着注入量的增加混合产出液沿程井筒温度增加,随着注入温度的增加混合产出液沿程井筒温度增加。该方法可有效指导现场措施工艺的实施,达到延长结蜡井的清蜡周期、延缓产液/产油量下降速度的目的。  相似文献   
6.
从白酒窖泥中分离得到11株乳酸菌,经16S rDNA基因序列同源性分析,鉴定为1株短乳杆菌、1株鼠李糖乳杆菌、2株干酪乳杆菌和7株铅黄肠球菌。 分析了11株菌MRS培养基发酵产乳酸性能,结果表明:乳酸产量与菌群生长呈正相关,鼠李糖乳杆菌L9、干酪乳杆菌L10与L11发酵液乳酸含量较高,分别为15.74、15.58、14.74g/L。4株代表菌相同条件下发酵高粱培养液产挥发性风味组分,共有物质13种,包含了白酒中重要香气成分:乙酸、己酸、乙酸苯乙酯和苯乙醇,且乙酸、己酸相对含量较高。各菌产可挥发性组分差异明显,相对含量较高的化合物种类为:短乳杆菌L5产烷烃类化合物(27.91%),铅黄肠球菌L8产醇类化合物(43.14%),鼠李糖乳杆菌L9产酯类(7.35%)、酮类(3.61%)和吡嗪类(3.3%)化合物,干酪乳杆菌L11产酸类(27.98%)和芳香类(5.96%)化合物。仅有短乳杆菌L5产四甲基吡嗪,短乳杆菌L5和铅黄肠球菌L8可明显产乙醇,鼠李糖乳杆菌L9和干酪乳杆菌L11产3-羟基-2-丁酮。这些物质对白酒风味和口感有重要影响。研究显示,窖泥中各种乳酸菌特征不一,对白酒酿造有不同影响。本研究旨在为进一步挖掘白酒酿造功能微生物、拓展乳酸菌的应用提供理论依据。  相似文献   
7.
大规模水力分段压裂是页岩气等非常规资源高效开发的关键技术。页岩气井返排率一般较低,大量的压裂液长期滞留地层对储层岩石、支撑剂强度等造成一定的伤害,影响页岩储层压裂改造长期效果。针对该问题,通过室内试验模拟研究现场压裂前后气测导流的变化规律,对压裂液伤害程度进行表征。结果表明:压裂液侵入降低了支撑剂、页岩岩石强度,导致支撑剂破碎率、岩石嵌入程度加剧,导流能力伤害达到60%以上;使用大粒径支撑剂、较高铺砂浓度,优选破胶性能好、低残渣、防膨性强的压裂液,能有效提高导流能力,降低压裂液伤害程度。研究结果对页岩地层压裂设计,降低压裂液伤害提高产量提供参考。  相似文献   
8.
在稠油热采过程中,提高注入工质的流动参数可显著增加采收率。为评价超临界多元热流体注入井筒后的流动传热特性,建立了相应的计算模型,得到了井底温度、压力与沿程热损失随注入流量、井口温度及井口压力的变化规律,并与注入超临界蒸汽情况下的流动传热规律进行了比较。结果表明,井底参数与注入流量呈单调关系;井底压力与井口温度、压力亦呈单调关系;而其他井口、井底参数的组合呈现出复杂关系。相同井口压力条件下,为使井底参数达到超临界状态,超临界多元热流体的井口温度和注入量高于注入超临界蒸汽的情况。适当选取较低的井口压力,可以减少热损失,提高经济性。所得结果可为注入工质参数的选取提供参考,进而为海洋稠油开发中的能源与动力保障的研究及设计明确需求。  相似文献   
9.
基于核磁共振技术的黄土内部孔径分布对逾渗特性的影响   总被引:1,自引:0,他引:1  
黄土的逾渗特性作为黄土渗流中比较特别的性质,它涉及到了黄土渗透性突变的特殊问题,其重要性是毋庸置疑的。研究黄土内部的孔径分布对逾渗特性的影响可以为工程中的某些渗流问题提供理论依据与实践价值,然而前人的研究往往忽视了这部分内容。基于此,本文展开了一组原状黄土和两组重塑黄土的试验研究:采用变水头试验分析黄土渗流过程中的逾渗现象,然后利用核磁共振技术对三组试样进行孔隙分布评价,最终分析孔径分布对于黄土逾渗特性的影响。试验结果表明:(1)原状黄土由于原生结构较好,孔隙大小的分布较重塑黄土更为集中,孔径集中在0.011~ 0.11 μm的中孔隙最多;重塑黄土由于丧失了结构性,部分土颗粒会产生黏聚,从而导致土体内的微孔与大孔的比原状黄土多。(2)由于原状黄土孔隙更为集中,内部孔隙更不容易透水,所以更容易达到临界状态从而使得渗透性发生逾渗,原状黄土的临界水头比相同干密度的重塑黄土更高。而重塑黄土则是干密度越大,孔隙率越低,孔隙越小,临界水头越高。试验利用方便快捷的核磁共振技术,首次分析了黄土内部孔径分布对黄土逾渗特性的影响,富有创新性,试验可靠性高,成果可为黄土重大工程的基础建设中的有关渗流问题提供建议。  相似文献   
10.
磨粒和抛光垫为化学机械抛光(CMP)提供了重要的机械磨削作用。为了探讨磨粒和抛光垫对铝合金化学机械抛光的磨削作用,研究了不同种类磨粒和抛光垫对材料去除率和表面形貌的影响。结果表明:在pH=12-13时,氧化铝抛光液去除率(MRR)为910nm/min,远大于二氧化硅与氧化铈抛光液,且获得较为理想光滑表面。3种不同抛光垫抛光后的铝合金表面,呢子抛光垫表面将不会出现划痕与腐蚀点,表面粗糙度较低为10.9nm。随着氧化铝浓度的增加,材料去除率(MRR)和表面粗糙度(Ra)均增加。当氧化铝含量为4wt%时,抛光垫使用呢子抛光垫适宜铝合金化学机械抛光,在获得高去除率的同时铝合金表面精度高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号