首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   2篇
  综合类   5篇
  2017年   2篇
  2013年   2篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
裂缝性油气藏压裂水平井试井分析   总被引:1,自引:0,他引:1  
利用Green函数源函数法,通过镜像映射和叠加原理得到裂缝性油气藏水平井多段压裂改造后地层中任意一点的压力解。首先推导顶底封闭四周无限大、盒状及定压条件下单条裂缝生产时地层中任意一点在拉氏空间的压力计算公式,并假设水平井井筒无限导流,进一步建立水平井多段压裂改造后井底压力求解方法。基于Stehfest数值反演得到考虑井筒存储和表皮系数影响的水平井井底压力解。对不同边界条件下井底压力及压力导数的双对数曲线进行分析,并分析压裂裂缝参数对井底压力响应的影响。结果表明:压裂水平井存在压裂裂缝线性流、压裂裂缝径向流、地层线性流、系统径向流及边界影响五种流动阶段;同时由于油藏为双重介质油藏,所以还存在基质系统向裂缝系统的窜流;裂缝条数越多,生产相同的时间时井底无因次压降越小,但当压力波传到边界后裂缝条数不再对流动造成明显影响;裂缝半长会影响压裂裂缝径向流出现的时间及地层线性流之前的压降,且压裂裂缝越长,压裂裂缝径向流出现的时间越晚,生产相同的时间所需要的无因次压降越小;裂缝间距会影响裂缝径向流结束的时间,且缝距越小,裂缝径向流持续的时间越短。现场应用结果证明了模型的正确性。  相似文献
2.
为对各向异性孔隙介质进行储层参数评价和岩石性质预测,在各向同性双孔隙度(IDP)模型基础上建立了新的各向异性地层的岩石物理模型。新模型综合考虑了岩石速度的各向异性、岩石的泥质含量以及粘土颗粒等矿物在地层中不规则排列的影响,采用差分有效介质理论(DEM)与自适应近似理论(SCA)相结合的方法计算干岩样骨架的弹性模量,用Brown和Korringa模型计算流体驱替参数:现场应用结果表明,各向异性岩石物理模型的散射和测量误差非常小,应用效果明显优于IDP模型。  相似文献
3.
为揭示强降雨条件下大孔隙土柱水分非平衡运移特性,基于双重渗透模型与运动波模型,采用有限差分技术编制计算程序,对降雨强度、持时、初始含水率、两域间等效扩散距离、经验参数(rw,n*)等对水分非平衡迁移特性进行分析.结果表明,双重渗透模型计算所得的水分交换峰值比运动波模型计算值大但水分交换深度范围小.双重渗透模型模拟表层水分变化较好,而运动波模型模拟土层下部水分变化较好.两种计算模型得到的体积含水率沿深度范围内呈现双拐点特性.湿润峰深度、水分交换深度范围均随降雨强度、降雨持时的增大呈现变大趋势.随着初始含水率逐渐接近饱和含水率,湿润峰位置下移,水分交换深度范围变大,但峰值骤降.随着两域间等效扩散距离增大,水分交换速率大幅减小,造成比较明显的非平衡流现象;但当两域间等效扩散距离超过5 cm时,湿润峰位置、水分交换速率、基质域剖面含水率相差很小.随着经验参数值rw,n*的增大,湿润峰下降速度变慢,但水流交换速度增大.当rw大于0.4或n*大于2.5,湿润峰下降速度、土壤剖面含水率、水流交换速度与范围变化幅度明显降低,产生非平衡流的几率降低.  相似文献
4.
裂缝的存在是诱导地下介质产生各向异性的主要原因,而裂缝中的流体则能够对地震波产生十分明显的能量衰减。本文基于双重孔隙介质理论,对含流体各向异性介质的地震响应特征进行了数值模拟,发现双孔介质的各向异性与介质的渗透率、裂缝密度、有效压力和频率均有重要联系。基于衰减各向异性理论,推导了含流体各向异性介质二维三分量应力-应变关系,结合旋转交错网格有限差分法,通过数值模拟给出了双孔介质中地震波的传播规律,结果表明裂缝密度的增大能够显著地增强介质的各向异性,使得qP波和快慢qS波垂直或平行于裂缝面的波前面均更接近椭圆,且流体的存在能够对qP和qS波相速度造成较为显著的衰减。  相似文献
5.
新型压裂改造技术-水平井体积压裂技术的发展进步是成功开发致密油气藏的巨大推动力。体积压裂可使致密储层形成裂缝网络系统,提高单井产量和油藏的可采储量[1-2]。体积压裂技术对储层进行三维立体的改造,根据裂缝网络的复杂特征,本文提出了数值模拟FNDP模型,建立三维复杂裂缝网络模型,有效的将复杂裂缝网络系统及其渗流规律进行表征,对影响体积压裂水平井产能的5个地质参数进行敏感性分析,并对其增产潜力进行评价。结果表明,体积压裂对储层渗透率较小的致密油藏改造效果显著;次生裂缝导流能力越强,体积压裂的增产潜力越强。研究成果为致密砂岩油藏体积压裂的开发方案设计工作提供一定参考。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号