首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  国内免费   1篇
  完全免费   59篇
  综合类   75篇
  2020年   17篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
1.
基于非线性修正函数的卷积神经网络图像识别研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决深度学习中使用线性修正函数ReLUs对于模型的表达能力欠缺,而柔性光滑函数Softplus无稀疏表达能力的问题。基于ReLUs和Softplus函数各自的优点,将ReLUs函数的稀疏表达能力和Softplus函数的光滑特性结合起来,提出一种使用非线性修正函数作为神经元激励的方法。分析了不同激活函数的性能,并且用卷积神经网络在MNIST和CIFAR-10标准数据库上进行图像分类识别实验,实验结果表明,使用非线性修正激活函数不仅可以加快网络收敛速度,也可以提高识别准确率,同时也不依赖于池化方法的选择。  相似文献
2.
为了给对比散度算法的进一步优化提供理论指导,尝试从理论上分析对比散度算法的收敛性.首先从仅含4个结点的玻尔兹曼机入手,利用单纯形表征模型的概率空间,以及流形表征概率空间与模型参数的关系,形象地表示了对比散度算法和极大似然算法的收敛过程,并从理论上推导出对比散度算法的收敛集与极大似然算法的收敛集之差不为空,从而证明了对比散度算法的有偏性.基于该结论,设计了一种先利用对比散度算法进行预训练,再利用极大似然算法调优的训练策略.实验结果表明,在应用该策略获得同等收敛效果的条件下,训练迭代步骤降低了83.3%.  相似文献
3.
文本的情感倾向在很大程度上依赖于其中情感倾向性较高的关键句,对这些情感关键句正确判定有利于提高整个篇章情感分类的效果。传统的基于规则的情感倾向性分析的优点是情感词表和规则表达准确,缺点是完备性差,而统计的方法则相反。结合使用支持向量机(support vector machine,SVM)与递归神经网络(recursive neural netw ork,RNN)分别构造分类器,然后对整个篇章和单个句子进行情感二元分类,将分类结果进行比较投票后判定出篇章中的情感关键句。句子级情感特征不仅包含情感词、否定词等传统的文法信息,同时加入深度学习领域中词向量的统计信息,而在篇章特征中也抽取出句型、位置等宏观信息。通过参与COAE 2014评测任务1的结果显示,该方法的微平均F1值达到0.388,在同类评测系统中处于最高水平。  相似文献
4.
提出一种基于马尔科夫逻辑网的句子情感分析方法.与深度学习方法相结合实现跨领域的知识迁移,同时采用马尔科夫逻辑网将句子的上下文信息与其它情感特征相结合实现句子情感分析.在COAE评测数据上的实验结果表明,该方法与SVM分类方法相比,准确率达到70.02%,并且在跨领域的情感分析任务中也得到了较好的结果.  相似文献
5.
定义了前馈核神经网络的体系结构。从实际应用的需求出发。所定义的网络涵盖了目前多数前馈神经网络。从理论上证明了该网络的批量学习过程实际上所表达的是一种核学习机,进而证明了网络的学习仅需在最后一层实施即可,而在隐含层的参数可任意赋值。因此,该结论事实上是现有LLM及ELM的拓广。同时,发现在逼近精度要求不是太高的情况下,目前的前馈神经网络学习技术因过于繁琐而没有必要,仅需对网络最后一层进行学习即可。而前馈神经网络技术目前最前沿的应用是解决大样本及深度知识表达问题。针对这两个热点问题,分别提出了大样本下的廉价学习策略和深度知识挖掘下的灵巧学习策略。在此,作者希望该文能引起广泛讨论甚至争论。  相似文献
6.
Hinton等人提出的深度机器学习,掀起了神经网络研究的又一个浪潮.介绍了深度机器学习的基本概念和基本思想.对于目前比较成熟的深度机器学习结构深度置信网DBNs和约束Boltzmann机(RBM)的结构和无监督贪婪学习算法作了比较详细的介绍和比较,并对算法的改进方向提出了有建设性的意见,对深度机器学习的未来发展方向和目前存在的问题进行了深刻的分析.  相似文献
7.
已有的异常行为检测大多采用人工特征,然而人工特征计算复杂度高且在复杂场景下很难选择和设计一种有效的行为特征.为了解决这一问题,结合堆积去噪编码器和改进的稠密轨迹,提出了一种基于深度学习特征的异常行为检测方法.为了有效地描述行为,利用堆积去噪编码器分别提取行为的外观特征和运动特征,同时为了减少计算复杂度,将特征提取约束在稠密轨迹的空时体积中;采用词包法将特征转化为行为视觉词表示,并利用加权相关性方法进行特征融合以提高特征的分类能力.最后,采用稀疏重建误差判断行为的异常.在公共数据库CAVIAR和BOSS上对该方法进行了验证,并与其它方法进行了对比试验,结果表明了该方法的有效性.  相似文献
8.
基于深度学习的循环神经网络方法,面向中文字和词的特点,重新定义了地名标注的输入和输出,提出了汉字级别的循环网络标注模型.以词级别的循环神经网络方法为基准,本文提出的字级别模型在中文地名识别的准确率、召回率和F值均有明显提高,其中F值提高了2.88%.在包含罕见词时提高更为明显,F值提高了26.41%.  相似文献
9.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性.  相似文献
10.
为进一步改善输油管道泄漏的检测方法,概述了目前一些常用的输油管道泄漏检测方法,如直接检测法、负压波检测法和基于神经网络的检测方法等.分析了这些检测方法在应用时的优缺点.然而,随着对输油管道泄漏检测要求的提高,这些检测方法不能满足人们的要求,仍需要进一步改善.同时,将深度学习引入了输油管道的泄漏检测中.深度学习是在神经网络基础上的进一步发展,它在许多方面上的应用弥补了该应用基于神经网络方法存在的不足.其中,深度学习已经在图像和语音识别应用中取得了成功.这些情况为以后将深度学习应用于输油管道的泄漏检测提供了部分理论支持.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号