首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  完全免费   20篇
  综合类   83篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   16篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
基于语义相似性的资源协同过滤技术研究   总被引:6,自引:0,他引:6  
为解决协同过滤推荐系统中所存在的可扩展性、稀疏性等问题带来的推荐性能下降,提出新的基于资源语义知识协同过滤算法,算法综合考虑了资源语义和用户评价的影响,改善基于资源协同过滤算法性能.实验表明,基于资源语义的协同过滤算法相对于传统协同过滤算法可提高推荐性能.  相似文献
2.
改进的个性化推荐算法   总被引:3,自引:0,他引:3  
协同过滤技术是个性化推荐系统中最早也是最为成功的技术之一。但是随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的CF(协同过滤)方法均存在各自的不足。本文分析了传统cF算法中存在的问题,对其相似性计算方法进行了改进,提出了一种优化的cF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度。  相似文献
3.
基于项目与客户聚类的协同过滤推荐方法   总被引:3,自引:0,他引:3  
文章给出了一种基于项目与客户聚类的协同过滤推荐方法,将聚类分析与协同过滤方法紧密结合;通过降低项目空间维数,减少了用户在寻找最近邻邻居的搜索强度,增强了推荐算法的实时性,提高了推荐服务的质量。  相似文献
4.
推荐算法综述   总被引:3,自引:0,他引:3  
推荐是解决互联网信息过载的主要途径之一,已被广泛应用于电子商务等多个领域.尽管已存在多种推荐算法,建造出更加智能、更加鲁棒的推荐系统仍面临诸多尚未解决的难题,推荐方法的研究仍是智能信息处理的研究热点.文章首先阐述了推荐方法的研究背景、研究意义,之后分别介绍了协同过滤推荐算法、基于内容的推荐算法、基于图结构的推荐算法和混合推荐算法,分析了各类算法的优点与不足,最后总结了主要的评价方法以及面临的主要问题,提出了改进的方法和未来可能的研究方向.  相似文献
5.
基于协作过滤的Web日志数据预处理研究   总被引:2,自引:0,他引:2  
协作过滤是当今应用较为成功的个性化服务技术,Web日志可以为个性化服务技术提供重要的数据源,只要对日志数据进行高效预处理,就能提高协作过滤算法有效性和个性化服务质量。结合实际日志数据的处理,给出了基于协作过滤的Web日志数据预处理过程结构图和一种可行的数据预处理方法,该方法不仅可以提供更加干净、规则的数据源,而且在用户兴趣度量方面,弥补了以往诸多兴趣度量方法的不足,为协作过滤算法提供了更加准确的数据支持。  相似文献
6.
个性化推荐系统中遗漏值处理方法的研究   总被引:2,自引:0,他引:2  
为了高效地解决协同过滤算法中的遗漏值问题,而不是简单地用缺省值加以代替,提出了一种新的、在协同过滤中的遗漏值处理方法.其基本思想是,先利用具有最小方差的局部主成分,把包含有遗漏值的不完备数据集划分成多个模糊聚类,然后通过求解广义逆矩阵来获得各个子聚类的主成分,最终在局部主成分的基础上通过简单的线性方程模型去估计聚类中的遗漏值.实验表明,这种方法的优点是低内存需求,具有较小的平均绝对偏差值,并且显示出了比传统推荐算法更好的推荐质量.  相似文献
7.
基于不同数据集的协作过滤算法评测   总被引:2,自引:0,他引:2  
针对协作过滤算法评测中普遍采用单一数据集,该文将传统的User-based(近邻数为20)、Item-based、Itemaverage、Item user average和Slope One 5种算法应用于MovieLens和Book-Crossing两种数据分布特征不同的数据集。结果显示,在Movielens这种评分值相对比较稠密的数据集上,Slope One算法的预测精度最好;而在评分值相对比较稀疏的Book-Crossing数据集上,Item-based算法的预测精度最好,Slope One的预测精度最差。选择算法应根据用户和资源分布具体情况确定。  相似文献
8.
二阶有向相似性对协同过滤算法的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
考虑用户的二阶相似性信息,提出了一种改进的协同过滤个性化推荐算法.实证统计发现,经典的基于产品映射的用户相似性定义中包含很多流行产品的信息,因此,无法准确度量用户的兴趣关联,通过引入有向的二阶相似性,算法可以有效降低大众主流喜好对目标用户相似性定义的影响.Movielens数据集上的实验结果显示,算法的准确度可以达到0.080 8,相对于经典的协同过滤算法,其准确性提高了22.08%,且当推荐列表长度L=50时,推荐列表的多样性可以达到0.775,较经典的协同过滤算法提高了10.87%.研究表明,二阶有向相似性信息对个性化推荐算法有很大影响.  相似文献
9.
基于协作过滤的Web日志数据预处理研究   总被引:1,自引:1,他引:0       下载免费PDF全文
协作过滤是当今应用较为成功的个性化服务技术,Web日志可以为个性化服务技术提供重要的数据源,只要对日志数据进行高效预处理,就能提高协作过滤算法有效性和个性化服务质量。结合实际日志数据的处理,给出了基于协作过滤的Web日志数据预处理过程结构图和一种可行的数据预处理方法,该方法不仅可以提供更加干净、规则的数据源,而且在用户兴趣度量方面,弥补了以往诸多兴趣度量方法的不足,为协作过滤算法提供了更加准确的数据支持。  相似文献
10.
个性化推荐算法研究   总被引:1,自引:0,他引:1  
随着全球信息总量的爆炸式增长,信息超载问题无法避免且日趋严重化.个性化推荐系统是当前解决信息过载问题的有效技术.该文首先阐述了推荐系统概念定义及其三大组成模块,其次深入分析了个性化推荐算法,详细讨论了当前主流的四大类推荐算法:基于内容的推荐算法、协同过滤推荐算法、基于知识的推荐算法和混合的推荐算法,从多角度对各算法的优缺点进行对比,然后阐述了常用评价方法、评测指标及对测试标准进行分类,并且介绍了常用数据集,最后展望个性化推荐未来研究热点.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号