首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   19篇
  国内免费   21篇
系统科学   9篇
丛书文集   30篇
教育与普及   12篇
理论与方法论   12篇
现状及发展   95篇
综合类   526篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   14篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   12篇
  2015年   23篇
  2014年   45篇
  2013年   17篇
  2012年   17篇
  2011年   30篇
  2010年   18篇
  2009年   34篇
  2008年   44篇
  2007年   39篇
  2006年   28篇
  2005年   38篇
  2004年   26篇
  2003年   27篇
  2002年   27篇
  2001年   35篇
  2000年   20篇
  1999年   11篇
  1998年   18篇
  1997年   14篇
  1996年   16篇
  1995年   12篇
  1994年   13篇
  1993年   5篇
  1992年   5篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   10篇
  1987年   8篇
  1985年   4篇
排序方式: 共有684条查询结果,搜索用时 31 毫秒
1.
相干态最初在1960年由Klauder和Sudarshan提出.基于此,许多经典性和非经典性的度量被提出. 1971年Radcliffe提出了原子相干态,但基于原子相干态的非经典性度量研究仍然较少.本文利用原子自旋相干态的特征提出一种度量非经典性的方法,并讨论了这种度量的若干性质,例如转动算符作用下的不变性和纯态的非经典性.我们给出了一些计算例子,例如猫态、NOON态和混合态.这种度量只在自旋为1的系统上讨论.这些结果对探索量子非经典性的度量和量子资源理论有一定的意义,也对实验室利用非经典性度量起到积极作用.  相似文献   
2.
3.
We distinguish two orientations in Weyl's analysis of the fundamental role played by the notion of symmetry in physics, namely an orientation inspired by Klein's Erlangen program and a phenomenological-transcendental orientation. By privileging the former to the detriment of the latter, we sketch a group(oid)-theoretical program—that we call the Klein-Weyl program—for the interpretation of both gauge theories and quantum mechanics in a single conceptual framework. This program is based on Weyl's notion of a “structure-endowed entity” equipped with a “group of automorphisms”. First, we analyze what Weyl calls the “problem of relativity” in the frameworks provided by special relativity, general relativity, and Yang-Mills theories. We argue that both general relativity and Yang-Mills theories can be understood in terms of a localization of Klein's Erlangen program: while the latter describes the group-theoretical automorphisms of a single structure (such as homogenous geometries), local gauge symmetries and the corresponding gauge fields (Ehresmann connections) can be naturally understood in terms of the groupoid-theoretical isomorphisms in a family of identical structures. Second, we argue that quantum mechanics can be understood in terms of a linearization of Klein's Erlangen program. This stance leads us to an interpretation of the fact that quantum numbers are “indices characterizing representations of groups” ((Weyl, 1931a), p.xxi) in terms of a correspondence between the ontological categories of identity and determinateness.  相似文献   
4.
Mn~(4+)-activated oxide phosphors,owing to their desirable spectral features,eco-friendly and low cost,are emerging as a new class of non-rare-earth red phosphors for warm white LEDs.However,these phosphors possess low photoluminescence quantum efficiency excited by blue chip currently.Herein we report an isostructural solid solution of Ca_(14)Zn_6Ga_(10-x)Al_xO_(35):0.15Mn~(4+)(0≤x≤10)synthesized by a traditional solidstate reaction route.The microstructure and luminescent performance of this red-emitting phosphor are investigated in detail with the aids of X-ray diffraction,diffuse reflection spectra,photoluminescence spectra/decay/QE,and temperature-dependent PL/QE measurements.Blue shift of energy peaks of~4A_2→~4T_1and~4A_2→~4T_2transition is illustrated by the Tanabe–Sugano diagram and the configurational coordinate diagram.The crystal field strength(Dq)and the Racah parameters(B and C)are carefully calculated to estimate the nephelauxetic effectβrespectively.Particularly we achieve external and internal quantum efficiencies as high as26.1%and 40.3%for Ca_(14)Zn_6Ga_6Al_4O_(35):0.15Mn~(4+)excited by 466 nm,the highest one ever reported in Mn~(4+)activated oxide phosphors under the similar condition.  相似文献   
5.
The radiation that is due to the braking of charged particles has been in the focus of theoretical physics since the discovery of X-rays by the end of the 19th century. The impact of cathode rays in the anti-cathode of an X-ray tube that resulted in the production of X-rays led to the view that X-rays are aether impulses spreading from the site of the impact. In 1909, Arnold Sommerfeld calculated from Maxwell׳s equations the angular distribution of electromagnetic radiation due to the braking of electrons. He thereby coined the notion of “Bremsstrahlen.” In 1923, Hendrik A. Kramers provided a quantum theoretical explanation of this process by means of Bohr׳s correspondence principle. With the advent of quantum mechanics the theory of bremsstrahlung became a target of opportunity for theorists like Yoshikatsu Sugiura, Robert Oppenheimer, and–again–Sommerfeld, who presented in 1931 a comprehensive treatise on this subject. Throughout the 1930s, Sommerfeld׳s disciples in Munich and elsewhere extended and improved the bremsstrahlen theory. Hans Bethe and Walter Heitler, in particular, in 1934 presented a theory that was later regarded as “the most important achievement of QED in the 1930s” (Freeman Dyson). From a historical perspective the bremsstrahlen problem may be regarded as a probe for the evolution of theories in response to revolutionary changes in the underlying principles.  相似文献   
6.
‘Holographic’ relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard ׳t Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic ‘AdS/CFT’ duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton׳s law of gravitation can be related holographically to the ‘thermodynamics of information’ on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde׳s scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.  相似文献   
7.
本文研究了动力学去耦合脉冲对腔量子电动力学系统中量子相干性, 量子失谐和量子纠缠的影响, 发现动力学去耦合脉冲不仅能够增大系统中两原子之间的量子相干性, 同时也能增大它们之间非经典关联(量子失谐和量子纠缠). 同时, 凭借迹距离的方法, 探讨了动力学去耦合脉冲增大两原子之间量子相干性的原因, 通过探究可以看出动力学去耦合脉冲能够控制和加速量子信息从其他子系统回流到两个原子中去, 并减少两原子子系统和其他子系统之间的量子信息流动, 从而增加两原子间的量子相干性和非经典关联. 最后, 利用保真度的方法研究了系统中三体纠缠出现的情况, 结果显示在不同的时间, 系统中会出现三体纠缠, 特别值得指出的是, 可以通过动力学去耦合脉冲来调节和增加系统中三体纠缠出现的时间.  相似文献   
8.
为使量子图像处理算法在量子计算机上得到验证与发展,结合IBM量子实验平台(IBM Q)上量子计算操作与量子图像处理理论的研究,设计了一种基于IBM Q平台的量子图像分割方法.提出了一种基于新型强化量子图像表达式(NEQR)的改进型强化量子图像表达式(IEQR),并根据IEQR表达式初始化量子图像分割电路.该电路由量子比较器(QBSC)和受控旋转门(Cswap)构成.最终在IBM Q和本地经典计算机仿真两种平台下实现了2×2和4×4大小的量子图像分割,实验结果表明了该算法的可行性和有效性,并验证了量子计算机的优越性.  相似文献   
9.
ABSTRACT

From 1797 to 1801 a controversy played out on the pages of the Medical Repository, the first scientific journal published in the United States. At its centre was the well-known feud between the followers of Antoine Lavoisier and Joseph Priestley, the lone supporter of the phlogiston model. The American debate, however, had more than two sides. The Americans chemists, Samuel Latham Mitchill and Benjamin Woodhouse, who rushed to support Priestley did not defend his scientific views. Rather, as citizens of a republic, they defended his right to have them. They also castigated the assertions of the “French chemists,” whose claims that the new chemistry obviated debate seemed unsettlingly similar to the dictatorial ambitions of the French state. Using the Medical Repository, Mitchill and Woodhouse sought a compromise that validated the new chemistry, but united it with a more egalitarian form of discourse. The desired balance eluded them. Priestley proved too stubborn, and as the French Revolution descended into dictatorship and war, Mitchill and Woodhouse came more to realize that truly prising French chemistry from the culture of the revolutionary era. The episode left Mitchill and Woodhouse disillusioned with chemistry and hoping to redirect scientific enthusiasm to more pious ends.  相似文献   
10.
In this paper I consider the structures that chemists and physicists attribute at the molecular scale to substances and materials of various kinds, and how they relate to structures and processes at other scales. I argue that the structure of a substance is the set of properties and relations which are preserved across all the conditions in which it can be said to exist. In short, structure is abstraction. On the basis of this view, and using concrete examples, I argue that structures, and therefore the chemical substances and other materials to which they are essential, are emergent. Firstly, structures themselves are scale-dependent because they can only exist within certain physical conditions, and a single substance may have different structures at different scales (of length, time and energy). Secondly, the distinctness of both substances and structures is a scale-dependent relationship: above a certain point, two distinct possibilities may become one. Thirdly, the necessary conditions for composition, for both substances and molecular species, are scale-dependent. To know whether a group of nuclei and electrons form a molecule it is not enough to consider energy alone: one also has to know about their environment and the lifetime over which the group robustly hangs together.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号