首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   7篇
综合类   12篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 18 毫秒
1.
用量子力学与分子力学组合的ONIOM方法,研究两种构象的赖氨酸(Lys)分子限域在螺旋手性单壁氮化硼纳米管(SWBNNT)内的手性转变机理.结果表明:限域在小管径螺旋手性SWBNNT的Lys分子骨架形变明显;当两种构象的Lys分子限域在SWBNNT(6,4)时,旋光异构反应的表观能垒分别为175.90,230.44kJ/mol,旋光异构反应决速步骤的内禀能垒分别为211.40,230.44kJ/mol,来源于质子从手性C向氨基N迁移的过渡态,比裸反应的决速步骤能垒(252.60kJ/mol)低.即螺旋手性SWBNNT的管径越小,限域催化作用越明显,限域在SWCNT(6,4)内具有氨基与羧基间单氢键的Lys分子先旋光异构.  相似文献   
2.
用量子力学和分子力学相结合的ONIOM(B3LYP/6-31+g(d,p)∶UFF)方法,研究SWCNT((8,8),(7,7),(6,6))内的布洛芬(IBU)分子结构和手性转变机理,在ONIOM(B3LYP/6-311++g(2df,pd)∶UFF)水平计算单点能.分子结构研究表明:与单体IBU分子相比,受限于SWCNT(6,6)时,羧基C与它的两个O的键长,羧基C与手性C的键长明显减小,导致手性C和羰基O以及羧基两个O的间距明显缩短.随着管径的增加,IBU分子结构变化变得不明显.手性转变反应通道研究表明:在SWCNT(8,8)内存在两个反应通道,一是手性碳上的氢直接以羰基氧为桥梁转移到手性碳的另一侧;二是氢先在羧基内转移,从羟基转移到羰基,而后手性碳上的氢再以羰基氧为桥梁转移到手性碳的另一侧.在SWCNT(7,7)和SWCNT(6,6)内只存在第二通道.反应势能面计算发现:IBU分子在SWCNT(6,6)内,羧基内氢转移和氢从手性碳转移到羰基的能垒明显降低,从单体的143.9和306.4kJ·mol-1分别降到123.3和246.3kJ·mol-1;在SWCNT(7,7)内降低的幅度次之,在SWCNT(8,8)内降低幅度很小.结果表明:IBU限域在SWCNT内时的氢转移反应能垒随管径减小而降低.  相似文献   
3.
采用量子力学与分子力学相结合的ONIOM方法,研究了α-丙氨酸限域在MOR分子筛12元环孔道内的手性转变.反应通道研究发现:手性转变反应有a,b和c 3个通道.a通道上,手性C上的H以氨基N作为迁移桥梁;b通道上,手性C上的H先后以羰基O和氨基N作为迁移桥梁;c通道上,先是在羧基内实现H迁移,而后手性C上的H再以羰基O为桥梁迁移,进而实现手性转变.反应势能面计算发现:相对于孤立环境,α-Ala限域在MOR分子筛12元环孔道,在各通道的手性转变能垒被不同程度地降低.在c通道,羧基内H迁移和手性C上的H向羰基迁移的能垒分别为124.4和298.2 kJ·mol-1,比单体此过程的能垒195.1和316.5kJ·mol-1明显降低.结果表明:MOR分子筛12元环孔道对α-Ala的手性转变反应具有催化作用,对羧基内H迁移反应的限域催化作用明显.  相似文献   
4.
采用组合量子化学ONIOM方法,基于氨基作为氢迁移桥梁,考察单壁碳纳米管(SWCNT)与水复合环境下α-丙氨酸分子(α-Ala)的手性转变机理.结果表明:基于氨基作为氢迁移桥梁的手性转变反应有a和b两个通道,其中通道a最具优势;水与扶手椅型SWCNT复合环境对氢迁移反应具有较好的催化作用;在SWCNT(8,8)的限域环境下,3个水分子构成的链使主反应通道的决速步骤能垒从裸反应的266.1kJ/mol降至117.8kJ/mol.表明SWCNT(8,8)与水构成的复合环境可作为实现α-Ala手性转变的理想纳米反应器,生命体内α-Ala分子可在类似的纳米环境实现旋光异构.  相似文献   
5.
采用计算机辅助药物设计(ONOIM)方法, 对基质金属 蛋白酶(MMPs)与其小分子化合物抑制剂的相互作用进行计算, 筛选出F-,C5H5N-6,NO-3和C2H4NO-2为能力较强的基质金属蛋白酶抑制剂(MMPIs).  相似文献   
6.
用量子力学与分子力学组合的ONIOM方法,考察布洛芬(Ibu)分子限域在螺旋手性单壁碳纳米管(SWCNT)内的手性转变机理.结果表明:螺旋手性单壁碳纳米管的直径越小,限域在其孔道内的布洛芬分子形变越明显;布洛芬分子在SWCNT(6,4)和SWCNT(7,4)内的旋光异构只有一个反应通道,在SWCNT(8,5)内的旋光异构有两个反应通道;布洛芬分子限域在SWCNT(6,4),SWCNT(7,4)和SWCNT(8,5)内时,旋光异构反应决速步骤的内禀能垒分别为247.95,273.83,292.24 kJ/mol,总包能垒分别为278.96,291.91,325.88kJ/mol.可见S-Ibu的旋光异构易在较小孔径的螺旋手性SWCNT内实现,SWCNT(6,4)可以作为布洛芬分子旋光异构的纳米反应器.  相似文献   
7.
采用量子力学与分子力学组合的ONIOM方法, 研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理. 采用原子中心密度矩阵传播(ADMP)分子动力学方法, 研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径, 给出中间体和产物的微观动态反应图像. 结果表明: 随着纳米管管径的减小, 限域其中的Lys分子骨架C原子间的键角明显增大; 手性C上的H与氨基N的距离逐渐变小; 在SWBNNT(5,5)内, 通过2个基元反应Lys分子实现了手性转变; 在SWBNNT(6,6)和SWBNNT(7,7)内, 通过3个和4个基元反应Lys分子实现了手性转变 ; 在SWBNNT(5,5)内, Lys分子手性转变反应决速步骤自由能垒降为最低值190.1 kJ/mol. 在 SWBNNT(7,7)内, 决速步骤能垒与裸反应基本相同.  相似文献   
8.
采用组合的量子化学ONIOM方法,研究MOR分子筛12元环孔道对赖氨酸分子手性转变反应的限域催化.结果表明:限域在MOR分子筛12元环孔道的客体与裸环境下的构象不同,过渡态a_TS2@MOR的1C—5N键长缩短,中间体SINT1@MOR的12H与9O,11H与9O以及12H与10O间的距离缩短;手性转变反应有a,b,c 3个通道;通道a为手性转变反应的主反应通道,决速步骤的Gibbs自由能垒为229.7kJ/mol,比裸反应决速步骤的Gibbs自由能垒252.6kJ/mol明显降低,即MOR分子筛对赖氨酸分子的手性转变反应有一定的限域催化作用.  相似文献   
9.
采用量子力学与分子力学组合的ONIOM方法,研究了限域在几种不同尺寸的扶手椅型单壁碳纳米管内赖氨酸分子的手性转变机理.结构分析表明:随着纳米管管径的减小,限域其中的赖氨酸分子构型的形变越来越明显,骨架碳原子间的键角明显增大;手性碳上的H与氨基N的距离逐渐变小.反应通道研究发现:标题反应在不同尺寸的纳米管内具有不同的通道,在SWCNT(5,5),SWCNT(6,6)和SWCNT(7,7)分别具有1个、4个和3个反应通道.势能面计算表明,赖氨酸限域在SWCNT(5,5)时,手性转变的吉布斯自由能垒被降到最低值192.8kJ·mol-1,是由手性碳上的质子向氨基氮和氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol-1相比较有显著降低.结果表明:SWCNT(5,5)对赖氨酸的手性转变反应具有较好的限域催化作用,可作为实现赖氨酸旋光异构的纳米反应器.  相似文献   
10.
采用量子化学ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了限域在SWCNT(9,9)与水复合环境下α-Ala的手性转变机理.反应通道研究发现:α-Ala在SWCNT(9,9)与水复合环境下有两个手性转变通道,一是手性碳上的氢以水分子为桥梁直接转移到羰基氧上,再经过一系列过程完成手性转变;二是氢先在羧基内以水分子为桥梁转移,而后手性碳上的氢以水分子为桥梁转移到羰基氧上,再经过一系列过程完成手性转变.反应过程势能面计算发现:S型α-Ala在SWCNT(9,9)内分别以1个和2个水分子作为桥梁实现氢转移,最高能垒都来自氢从手性碳转移到羰基氧的过渡态.与单体情形相比较,在第一通道最高能垒从326.5kJ·mol-1降到192.2和164.5kJ·mol-1,在第二通道最高能垒从320.3kJ·mol-1降到175.5和154.3kJ·mol-1.结果表明SWCNT(9,9)与水的复合环境对α-Ala手性转变过程的限域影响,是使氢转移反应的能垒比单体和只限域在SWCNT(9,9)的情形明显降低,且比单纯水环境下也有所降低.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号