首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   11篇
  综合类   11篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
排序方式: 共有11条查询结果,搜索用时 35 毫秒
1.
智能汽车故障诊断技术对于保障智能汽车安全行驶具有重要意义,本文针对智能汽车传感器数据异常检测和车辆运动的异常检测提出了一系列故障诊断方法. 针对非时序传感器数据,采用基于超限学习框架的自动编码器,对正常数据进行特征压缩学习其特征表示,再利用压缩的特征重构数据,根据重构误差的大小判断数据是否异常. 针对时序传感器数据,采用多层长短时记忆网络学习时序数据之间的时间依赖关系来预测当下时刻的数据值,根据预测误差的大小判断数据是否异常. 提出一种阈值随误差大小动态变化的自适应阈值确定方法,使得决策变量对于异常值相对敏感. 进一步地,采用车辆自行车运动学模型和Kalman滤波,利用Jarque-Bera测试对预测值和量测值残差的正态性进行检验来检测车辆运动是否异常. 实际场地测试验证了本文所提出的方法可以有效检测非时序或时序传感器数据的异常,并对车辆运动是否异常进行检测.  相似文献
2.
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现PMU的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(ICNN)与双向长短时记忆网络(BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。  相似文献
3.
针对车道变换意图识别中数据源单一,传统序列模型难以捕获长序列范围内换道意图且存在长期依赖问题,提出一种结合时间信息加权指数损失函数的LSTM(long short-term memory)车辆换道意图识别模型。首先,利用驾驶模拟舱,眼动仪进行高速公路驾驶实验,采集车辆运行数据和驾驶员眼动数据;然后,基于LSTM结构单元构建高速公路环境下车辆换道意图识别模型,提出的基于时间信息加权的指数损失函数对模型权重进行优化;最后,利用车辆运行数据和驾驶员眼动数据对所提模型加以验证并与其它模型进行对比,所提模型换道识别的准确率为96.78%,精确率为95.72%,召回率为95.83%,F1值为95.73%。结果表明,长短时记忆网络对于长序列换道意图识别过程具有较好的分辨能力,提出的损失函数对模型权重优化具有良好的效果。  相似文献
4.
王琦  王庆明 《科学技术与工程》2021,21(11):4550-4555
为解决某些手部工作意图不能由手部的运动和肌肉行为来反映的问题,拟通过监测部分躯干肌肉的协作方式,识别手部行为意图。因此在限定任务的情况下,设计了伴有单手操作的弯伸腰实验。同步采集全身运动信号和一组椎旁肌肌电信号。调整、选择肌电信号的两步聚类细分程度。作为双向长短时神经网络的输入信号,肌肉组行为标注步骤的F1值平均为91.37%。最终确认,从躯干肌肉群行为抽取的编码可作为信号源,识别手部精确控制、维持平衡等意图。  相似文献
5.
为了避免容器云资源因资源供求不均衡而导致的资源利用率差等问题,需要对未来时刻的资源需求情况进行预测来进行更精准的调度和分配资源,因此,结合神经网络的高效学习能力与自适应调整的学习率,提出一种基于自适应神经网络的云资源预测模型。首先融合卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory network,LSTM)的特点去挖掘历史数据的特征,预测未来的资源需求;然后根据模型预测情况自适应调整学习率,提高模型预测的精度。使用Microsoft Azure公开数据集进行测试,相较于单一模型CNN、LSTM和未加入自适应学习率的神经网络模型,均方根误差分别下降了17.74%、18.27%和6%,证明了模型的有效性。  相似文献
6.
谭智钢  程静  王维庆 《科学技术与工程》2021,21(32):13714-13720
针对包含多种可再生能源的冷热电联供型微网系统的能量优化问题,为了优化其运行过程的经济效益和环境效益,本文提出一种基于改进鲸鱼优化算法的多时间尺度下能量优化方法,首先根据长短期记忆网络(Long Short Term Memory,LSTM)预测得到的可再生能源出力和负荷需求预先制定调度规划,然后以此预测数据为基础,采用改进鲸鱼优化算法调整可控设备出力,优化微网系统的运行成本和固定成本。将该方法应用于某楼宇冷热电联供型微网,结果表明,在满足负荷需求的基础上使得经济成本平均降低4.03%且经济效益更优。  相似文献
7.
为了提高推荐算法的推荐性能,在序列建模过程中,针对循环神经网络(recurrent neural network,RNN)无法并行运算导致建模速度与准确度较低,以及在偏好预测过程中对用户不同阶段偏好没有动态融合的问题,提出了一种基于混合神经网络的序列推荐算法。在算法模型的用户交互序列建模阶段,考虑到用户近期偏好变化频繁,对于时间效率与推荐准确度都有更高的要求,引入时间卷积网络(temporal convolutional network,TCN)对近期交互序列进行建模,解决了循环神经网络建模速度和准确度较低的问题;在用户偏好预测阶段,在考虑用户近期与长期偏好的基础上,基于注意力机制动态融合了用户近期与长期2个交互阶段的偏好,从而提高了推荐的性能。在公共数据集MovieLens10M与LastFM上进行了实验,结果证明了模型的有效性。  相似文献
8.
藏文分词是实现藏文语音合成和藏文语音识别的关键技术之一。提出一种基于双向长短时记忆网络加条件随机场(bidirectional long-short-term memory with conditional random field model, BiLSTM_CRF)模型的藏文分词方法。对手工分词的语料经过词向量训练后输入到双向长短时记忆网络(bidirectional long-short-term memory, BiLSTM)中,将前向长短时记忆网络(long-short-term memory, LSTM)和后向LSTM学习到的过去输入特征和未来输入特征相加,传入到线性层和softmax层进行非线性操作得到粗预测信息,再利用条件随机场(conditional random field, CRF)模型进行约束性修正,得到一个利用词向量和CRF模型优化的藏文分词模型。实验结果表明,基于BiLSTM_CRF模型的藏文分词方法可取得较好的分词效果,分词准确率可达94.33%,召回率为93.89%,F值为94.11%。  相似文献
9.
为了改善图像表情和图像序列表情识别效果,针对传统表情识别特征提取复杂和效果不理想问题,提出了一种深度残差网络和局部二值模式(local binary patterns,LBP)相结合的特征提取方法,利用深度残差网络提取数据集的空域特征,长短期记忆网络(long short-term memory,LSTM)处理时域特征,实现空域与时域特征的结合。研究了不同层数的残差网络、不同形式的LBP算子以及其他网络结构对人脸表情识别的影响,对比了支持向量机和随机森林实现的序列表情识别算法。在Cohn-Kanade数据集和AFEW6.0数据集上进行了验证,实验结果表明,算法在验证集上的准确率分别为73.1%和58.4%,相比其他算法有一定程度的提升。  相似文献
10.
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(CNN-BiLSTM)进行人体活动识别(HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(CNN)自动提取人体活动数据的特征,再通过双向长短期记忆网络(BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明,基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号