首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  国内免费   1篇
  完全免费   5篇
  综合类   16篇
  2020年   1篇
  2019年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2005年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
1.
应用特征聚合进行中文文本分类的改进KNN算法   总被引:14,自引:0,他引:14       下载免费PDF全文
针对以KNN为代表的VSM模型存在的向量各特征项孤立处理问题 ,提出了一种应用特征聚合方式的改进算法·该算法通过CHI概率统计计算文本特征词对分类的贡献 ,将对分类有相同贡献的文本特征词聚合 ,使用它们共同的分类贡献模式代替传统算法中单个词对应向量一维的方式·该算法提高了稀有词对分类的贡献、强化了关联词的分类效果、并降低了文本向量的维数·与传统KNN算法进行的对比实验证明 ,该算法明显提高了分类的准确率和召回率  相似文献
2.
kNN算法在文本分类中的改进   总被引:4,自引:0,他引:4  
kNN算法用已归类的数据训练分类器,它是一种基于实例研究(instance_based learning)文本分类算法,本文在研究kNN算法的基础上,结合k邻近法和最近特征线法的思想,提出了新的分类方法,k最近特征线法(k nearest feature line,kNFL),将其运用于文本分类中,汲取了kNN算法和NFL算法的优点,降低了偶然误差,提高了算法适应性和分类精度。  相似文献
3.
基于改进分类模型的文本分类系统实现   总被引:1,自引:0,他引:1  
提出一种基于改进的分类模型的文本分类系统来实现文本的自动分类.针对传统的特征提取算法不能很好区分特征词在类内和类间分布情况的缺陷,该系统利用方差对该算法作了改进,用改进的特征提取算法量化各个特征词的权重,为了降低特征向量的维数,采用为每个类建分类器的分类模型,利用遗传算法来修正各个类特征词的权重,直到为每个类训练出能够代表本类的特征向量,最后用这些类的特征向量进行分类.通过在同一数据集上进行对比实验,说明本文提出的改进分类模型的文本分类系统是正确可行的.  相似文献
4.
MICkNN: Multi-Instance Covering kNN Algorithm   总被引:1,自引:0,他引:1  
Mining from ambiguous data is very important in data mining. This paper discusses one of the tasks for mining from ambiguous data known as multi-instance problem. In multi-instance problem, each pattern is a labeled bag that consists of a number of unlabeled instances. A bag is negative if all instances in it are negative. A bag is positive if it has at least one positive instance. Because the instances in the positive bag are not labeled, each positive bag is an ambiguous. The mining aim is to classify unseen bags. The main idea of existing multi-instance algorithms is to find true positive instances in positive bags and convert the multi-instance problem to the supervised problem, and get the labels of test bags according to predict the labels of unknown instances. In this paper, we aim at mining the multi-instance data from another point of view, i.e., excluding the false positive instances in positive bags and predicting the label of an entire unknown bag. We propose an algorithm called Multi-Instance Covering kNN (MICkNN) for mining from multi-instance data. Briefly, constructive covering algorithm is utilized to restructure the structure of the original multi-instance data at first. Then, the kNN algorithm is applied to discriminate the false positive instances. In the test stage, we label the tested bag directly according to the similarity between the unseen bag and sphere neighbors obtained from last two steps. Experimental results demonstrate the proposed algorithm is competitive with most of the state-of-the-art multi-instance methods both in classification accuracy and running time.  相似文献
5.
在文本分类中,数据规模过大或文本分布不均匀对传统KNN算法的准确率和效率具有重要影响。为了解决该问题,文章提出一种基于粗糙KNN(k-nearest neighbor)算法的文本分类新方法。首先引入粗糙集中的上下近似概念定义各类文本的上下近似空间,将文本向量空间分为核心和混合2大区域;然后改进传统KNN算法的隶属度函数;再针对不同的文本区域,采取差异化的分类策略以提高分类的效率和准确率。实验表明,基于粗糙KNN算法的文本分类方法在提高分类准确率的同时,分类的效率也有很大提高。  相似文献
6.
针对微信数据多,无法从中快速找到与案件相关数据的问题,提出了一种基于KNN(k-nearest neighbor)算法的Android智能手机微信取证方法。引入词语相似度计算会话间的距离,将微信会话表示成特征词的向量,用KNN算法对会话进行分类,迅速找到与犯罪有关的聊天内容,并通过实验验证了该方法的可行性与准确性。  相似文献
7.
利用基于阈值聚类算法首先对带类标记的样本数据集进行有指导性聚类,其主要目的是压缩训练数据集,解决KNN分类算法的样本选择问题以及孤立点的发现,用少量的更具代表性的聚类中心替代KNN算法中巨大的样本集,然后利用聚类密度改进KNN分类算法,从而提高KNN分类检测的准确度和速度.  相似文献
8.
阐述了注入式攻击及KNN算法的相关概念并探讨了注入式攻击行为检测与文本分类技术的关系.结合KNN算法的优点及注入式攻击行为检测与文本分类的相似性,提出了Web日志中基于KNN算法的注入式攻击检测方法,给出了其计算模型,并进行了检测对此.结果表明,该方法具有良好的检测准确度.  相似文献
9.
就基于数据预处理的入侵检测系统进行了研究,并针对数据预处理子系统,提出了一种有效的预处理方法,即将对数据源的基本处理和基于TCM-KNN算法的数据预处理聚类器相结合。实验证明,经过预处理的数据,不仅使不完整信息数量和攻击数据数量大大减少,而且使入侵检测系统的检测率得到了进一步的提高,误报率得到了进一步的降低。  相似文献
10.
针对KNN的K值难以确定的问题,提出一种基于并行遗传算法的KNN分类方法.该方法采用粗粒度模型的并行遗传算法进行设计,通过种群内的遗传、变异和种群间的并行进化、联姻得到优化的K值和分类结果.实验结果表明,该方法有效的提高了KNN算法的分类效果,是一种精确高效的分类方法.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号