首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3879篇
  免费   149篇
  国内免费   177篇
系统科学   11篇
丛书文集   168篇
教育与普及   164篇
理论与方法论   34篇
现状及发展   7篇
综合类   3821篇
  2024年   3篇
  2023年   70篇
  2022年   53篇
  2021年   70篇
  2020年   80篇
  2019年   70篇
  2018年   39篇
  2017年   53篇
  2016年   85篇
  2015年   84篇
  2014年   188篇
  2013年   177篇
  2012年   170篇
  2011年   200篇
  2010年   184篇
  2009年   220篇
  2008年   287篇
  2007年   264篇
  2006年   194篇
  2005年   195篇
  2004年   188篇
  2003年   161篇
  2002年   138篇
  2001年   121篇
  2000年   144篇
  1999年   126篇
  1998年   81篇
  1997年   76篇
  1996年   61篇
  1995年   63篇
  1994年   58篇
  1993年   61篇
  1992年   52篇
  1991年   61篇
  1990年   41篇
  1989年   46篇
  1988年   17篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1957年   1篇
排序方式: 共有4205条查询结果,搜索用时 15 毫秒
1.
以122型为代表的铁基超导体在临界电流密度、上临界场以及各向异性方面具有较大的优势,引发了新一轮研究热潮.目前,虽然122型线带材的性能已达到实用化水平,但该体系仍存超导相非均匀分布等问题,限制了其载流性能的提升.新发现的具有化学计量比的1144型超导材料具有更好的均匀性、独特的钉扎特性以及更高的载流性能,使其适合于高场应用.本文简述了1144材料的结构和超导特性,并详细分析了单晶、多晶及超导线带材制备工艺的优化,以及性能提升的方法.同时,为提高1144型铁基超导线带材的临界电流密度,讨论了改善晶粒连接性和超导相纯度的途径.  相似文献   
2.
3.
通过单因素实验和正交试验以感官评定及固形物溶出率为评价指标对香菇菌汤煮制工艺进行优化,并采用高效液相色谱技术对煮制后香菇及汤液中非挥发性特征风味物质进行测定。结果表明,当煮制温度为120℃、煮制时间为45min、香菇质量浓度为0.050g/mL时,香菇菌汤感官评价及固形物溶出率较好。在煮制过程中,香菇中风味物质逐渐向汤液中转移,使得汤液中可溶性糖醇、有机酸、呈味核苷酸等非挥发性风味物质含量显著高于煮制后香菇中含量。除此之外,在煮制后汤液中,特征性风味氨基酸含量也显著高于煮制后香菇中含量。但是,与新鲜香菇相比风味氨基酸在煮制后汤液及香菇中绝大多数含量有所降低。  相似文献   
4.
激光熔丝增材制造技术能大大提高制造效率,但制件存在复杂的残余应力,导致制件内部缺陷多.为了解决这些问题,将超声微锻造与滚压相结合对制件表面进行高频率击打,使金属表层产生塑性变形,将原有的拉应力转变成压应力.以TC4为研究对象,利用ANSYS对激光熔丝过程进行热-结构耦合数值模拟,并施加超声滚压微锻造,分析微锻造前后应力场的变化情况.研究结果表明:激光熔丝熔覆层应力分布更加均匀,拉应力减小,甚至转化为压应力,有效地抑制制件内部缺陷的形成.  相似文献   
5.
6.
从假单胞菌593中克隆出多铜氧化酶copA基因,并将其转入大肠杆菌BL21(DE3) p Lys S过量表达和纯化.纯化的CopA蛋白展示出漆酶活性,针对漆酶的3种底物ABTS、DMP、SGZ,CopA的最适反应pH分别是3. 5、7. 5和7. 5,最适反应温度分别是50℃、50℃和42℃.pH稳定性和热稳定研究发现,在pH 7. 0条件下,CopA比较稳定,在温度大于42℃保存该蛋白,其活性降低较快.二价金属离子影响实验发现,CopA漆酶活性能被二价铜离子显著加强.酶动力学常数实验结果展示,CopA作用于底物ABTS,K_m为0. 281 mmol/L,V_(max)为3. 02×10~(-3)mmol·L~(-1)·min~(-1),k_(cat)为1. 8 s~(-1); CopA作用于底物DMP,K_m为0. 141 mmol/L,V_(max)为4. 54×10~(-3)mmol·L~(-1)·min~(-1),k_(cat)为2. 2 s~(-1); CopA作用于底物SGZ,K_m为0. 025 mmol/L,V_(max)等于0. 7×10~(-3)mmol·L~(-1)·min~(-1),k_(cat)为0. 87 s~(-1).  相似文献   
7.
为了给临床合理使用抗菌药物提供科学依据,回顾性调查了医院2016年1月1日至2019年12月31日铜绿假单胞菌耐药率变化趋势及同一时间段抗菌药物年用量,计算使用频度,分析了抗菌药物使用强度与铜绿假单胞菌(Pseudomonas aeruginosa)耐药率的相关性.分析结果显示:铜绿假单胞菌对哌拉西林/他唑巴坦、庆大霉素、头孢哌酮/舒巴坦、头孢哌酮、头孢吡肟、亚胺培南西司他丁、氨曲南、阿米卡星、奈替米星和左氧氟沙星的耐药率均呈下降趋势;碳青霉烯类、三代头孢抗菌药物使用强度(antibiotics use density,AUD)增长明显(P<0.05),头孢吡肟、大环内酯类AUD下降明显(P<0.05),哌拉西林/他唑巴坦、氨基糖苷、喹诺酮类、单环β内酰胺类AUD无显著变化(P>0.05);碳青霉烯类、三代头孢AUD与铜绿假单胞菌耐药率呈正相关(r=0.523、0.605,P<0.05),哌拉西林/他唑巴坦、单环β内酰胺类、喹诺酮类、大环内酯类、氨基糖苷类、四代头孢与铜绿假单胞菌耐药率无关(r=0.012~0.136,P>0.05).分析结果表明:2016年1月1日至2019年12月31日医院铜绿假单胞菌的耐药率控制较好,铜绿假单胞菌耐药率与抗菌药物使用强度有关.临床应重视对抗生素的管理,减少细菌耐药的产生及其对人类健康的威胁.  相似文献   
8.
不同栽培基料对竹荪农艺性状和主要营养成分的影响   总被引:1,自引:0,他引:1  
【目的】从农艺性状、营养价值、氨基酸含量等方面分析对比不同栽培基料下竹荪的品质,以生产高品质竹荪产品,提高食用菌菌糟利用率,降低竹荪生产成本。【方法】通过设置100%竹屑(CK)、70%(体积分数,下同)竹屑+30%桑枝屑(T1)、70%竹屑+30%菌糟(T2)共3个处理,研究不同基料对竹荪农艺性状、营养成分和氨基酸含量的影响。【结果】①T2处理的竹荪长度、菌柄质量和干质量较CK和T1均显著增加,T1和T2处理的竹荪产量和生物学效率均显著高于CK,产量分别增加了26.44%和41.11%,生物学效率分别提高了46.02%和62.66%。②T2处理的竹荪粗蛋白、灰分、粗多糖和多酚含量均显著高于CK,但与T1无显著差异,T1处理的竹荪中Ca和Fe含量有所提高,T2处理的竹荪Cu、Zn和Se含量有所提高。③T2处理的竹荪氨基酸总量和必需氨基酸含量较CK分别增加了58.82%和64.97%,较T1分别增加了33.07%和38.20%,T2处理的竹荪甜味氨基酸占比高于T1,苦味和芳香氨基酸占比低于T1。【结论】在栽培基料中添加菌糟和桑枝屑均能提高竹荪的营养价值和生物学效率,但添加菌糟的效果更佳,可使竹荪粗蛋白、灰分、粗多糖和多酚含量分别提高28.08%、33.53%、111.8%和25.36%,有效改善了竹荪的品质。  相似文献   
9.
为提高板翅式换热器换热效率的同时减小流动阻力,提出了一种基于翅片打孔的换热器换热性能提升方式,并通过PIV实验进行了解释验证.研究发现,在板翅式换热器翅片上进行打孔,可以破坏流道内流体与壁面之间的换热边界层,使局部流动状态由层流转变为紊流,提升换热能力且不明显增加压降.仿真参数分析表明,在两种不同的热流密度下,不同入口质量流时,翅片打孔的换热器换热性能均优于板翅式换热器.  相似文献   
10.
从生活污水中分离得到了一种自养氨氧化菌富集培养物,其中的唯一的自养氨氧化菌为Nitrosomonas nitrosa SN-6,其16S rDNA序列和amoA基因序列均与N. nitrosa Nm90高度相似(Identity达100%).该文研究了高温对该富集培养物在培养基和垃圾渗滤液中代谢与生长的影响,并测定了游离亚硝酸浓度和盐度对其脱氨效果的影响及该菌对污染地表水的脱氨效果.结果表明:该富集培养物的最高耐受温度不低于43 ℃,最大亚硝氮积累速率可达129 mg·L-1·d-1;在培养基中的最适生长温度为37~40 ℃(代时低至6.1 h),在垃圾渗滤液中的最适生长温度为40 ℃(代时低至5.9 h);该富集培养物脱氨活性的半数抑制盐度略高于1%,半数抑制游离亚硝酸浓度约为0.095 mg·L-1;仅需3 d即可使污染地表水中的氨氮从5~23 mg·L-1降至不超过1.5 mg·L-1.结果表明,SN-6不但适于高温高氨水体,也适于中温低氨水体脱氨,具有广泛的应用前景.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号