首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  国内免费   7篇
  完全免费   142篇
  综合类   667篇
  2020年   7篇
  2019年   15篇
  2018年   15篇
  2017年   26篇
  2016年   24篇
  2015年   36篇
  2014年   73篇
  2013年   81篇
  2012年   78篇
  2011年   73篇
  2010年   57篇
  2009年   52篇
  2008年   56篇
  2007年   32篇
  2006年   33篇
  2005年   8篇
  2003年   1篇
排序方式: 共有667条查询结果,搜索用时 46 毫秒
1.
二进制改进粒子群算法在背包问题中的应用   总被引:18,自引:2,他引:16  
提出了用于求解0 1背包问题的二进制编码的粒子群算法,阐明了该算法求解背包问题的具体实现过程.为了提高粒子群算法的收敛速度,在传统的二进制编码的粒子群算法中嵌入了记忆功能.通过对其他文献中仿真实例的计算和结果比较,表明该算法在寻优能力、计算速度和稳定性方面都超过了文献中提到的遗传算法和模拟退火算法.提出的求解背包问题的二进制改进粒子群算法,同样可以应用于其他离散优化问题.  相似文献
2.
粒子群算法在求解优化问题中的应用   总被引:17,自引:2,他引:15  
粒子群优化(PSO:Particle Swarm Optimization)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成优化.为了避免PSO算法在求解最优化问题时陷入在局部最优及提高PSO算法的收敛速度,提出了对PSO算法增加更新概率.对无约束和有约束最优化问题分别设计了基于PSO算法的不同的求解方法和测试函数,并对PSO算法求解多目标优化问题进行了研究.仿真实验表明了改进的PSO算法求解最优化问题时的有效性.  相似文献
3.
基于改进多粒子群算法的电力系统无功优化   总被引:12,自引:0,他引:12  
将改进的多粒子群算法应用于电力系统无功优化问题的求解,克服了传统粒子群算法收敛精度不高、易陷入局部最优的缺点.该优化方法对原粒子群算法进行了如下改进:通过增强粒子群间的协同作用、引入惯性因子以及扰动的策略,来平衡集中强化搜索和分散多样化搜索过程.对IEEE6节点和IEEE30节点系统分别进行无功优化计算,并与传统粒子群算法进行了比较,结果表明,该算法求得的有功损耗较原状态降低了近1/5,且电压合格率为100%,具有较强的全局搜索能力和较高的收敛精度,是求解无功优化的有效方法.  相似文献
4.
带时间窗车辆路径问题的混合粒子群算法   总被引:8,自引:1,他引:7  
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法.  相似文献
5.
多目标最优化的粒子群算法   总被引:8,自引:0,他引:8  
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策.  相似文献
6.
最小二乘支持向量机的参数优化及其应用   总被引:8,自引:0,他引:8  
针对最小二乘支持向量机的多参数带来的参数寻优问题,将进化算法(遗传算法和PSO算法)应用其中,通过Sinc函数的测试,成功地实现了多参数的联合优化;将这一方法应用到德士古炉温软测量建模中,采用来自工业现场的实测数据进行仿真,将两种方法的仿真结果与常用的BP神经网络进行比较,可以看出两种算法都较好地解决了最小二乘支持向量机的参数优化问题.  相似文献
7.
离散二进制粒子群算法分析   总被引:8,自引:0,他引:8  
粒子群算法(Particle Swarm Optimization,PSO)主要用优化计算实值的连续性问题,而离散二进制粒子群算法(Binary Particle Swarm Optimization,BPSO)则用来优化离散空间问题,它扩展了PSO算法的应用,现已广泛应用到各种离散优化问题计算中,但目前对BPSO算法的理论分析研究还很少,难以指导算法性能.本文从位改变概率和遗传算法的模式定理两方面对BPSO进行分析.分析得出,BPSO算法具有很强全局搜索能力,但不能收敛于粒子的全局最优位置,而且随着算法迭代运行,BPSO的随机性越来越强,缺乏后期的局部搜索能力.本文利用基准的函数,通过仿真实验计算,验证本文的分析结果.基于分析的结果,本文提出BPSO的改进方法,新方法采用新的概率映射函数和混合遗传算法的方法.通过对基准函数的仿真试验,验证了改进方法的有效性.  相似文献
8.
基于在线归档技术的多目标粒子群算法   总被引:6,自引:0,他引:6  
提出一种基于在线归档技术的新型多目标粒子群优化算法. 使用外部集归档,在归档粒子中采用适应值共享技术选出全局最优位置,使得种群多样性得以维持;在粒子群的进化过程中,使用在线归档策略,将归档的粒子合理地引入下一代的种群,淘汰原种群中的不良粒子,从而保证进化过程中种群的优良性. 用Zitzler的两个多目标测试函数评价算法的性能. 结果表明,该算法能快速收敛到Pareto非劣最优目标域,并且解集沿着Pareto非劣最优目标域有很好的扩展性.  相似文献
9.
车辆路径问题的并行粒子群算法研究   总被引:6,自引:4,他引:2  
设计了一种引入了模拟退火机制的并行粒子群算法.该算法结合了基本粒子群优化算法的快速寻优能力和模拟退火算法的概率突跳性,避免了基本粒子群优化算法易于陷入局部最优的缺点,提高了进化后期算法的收敛精度.将该算法用于解决车辆路径问题,实验结果表明该算法具有较好的性能.  相似文献
10.
三群协同粒子群优化算法   总被引:5,自引:0,他引:5  
针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号